• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • Tagged with
  • 10
  • 10
  • 10
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hochwassersituation im Grundwasser 2010/2011

Wendel, Sibylle, Pöhler, Hannaleena, Scherzer, Jörg 31 July 2012 (has links) (PDF)
Starke Niederschläge im Sommer 2010 führten in Sachsen nicht nur zu regional bedeutsamen Hochwassern, sondern auch zu flächendeckend stark erhöhten Grundwasserständen. Der Bericht dokumentiert die Analyse der Grundhochwassersituation im Winter 2010 bis zum Frühjahr 2011 für den Freistaat Sachsen. Dabei wurden neben Niederschlags-, Abfluss- und Temperaturdaten auch Ganglinien von 126 weitgehend anthropogen unbeeinflussten Grundwassermessstellen des staatlichen Messnetzes statistisch ausgewertet. Mit Hilfe hydrogeologischer Karten wurden regionale Besonderheiten und der Einfluss von Braunkohlenbergbau und Wasserschutzgebieten betrachtet. Die daraus abgeleiteten Grundwasserstandsentwicklungstypen konnten hydrogeologischen Teilräumen zugeordnet werden.
2

Stofftransportmodellierung im Sicker- und Grundwasser

Pfützner, Bernd, Klöcking, Beate, Knab, Gerd, Wenske, Dieter, Rost, Andreas, Wagner, Bernhard, Steininger, Michael, Kuhn, Karin, Ihling, Heiko 02 January 2012 (has links) (PDF)
Entwickelt wurde eine Konzeption zur Erstellung und Pilotanwendung eines gekoppelten Modellsystems für Sicker- und Grundwasser (ReArMo), das die prognostische Abschätzung künftiger Entwicklungen des Grundwassers nach Menge und Beschaffenheit unter geänderten Randbedingungen (Klima, Landnutzung, Bewirtschaftung) zum Ziel hat. Ein weiteres Ziel dieser Modellkopplung besteht in der Optimierung der Stickstoffdüngung bei relevanten landwirtschaftlichen Betrieben. Die zu betrachtenden Prozesse in der wechselfeuchten Bodenzone und im Grundwasser werden gemäß dem aktuellen Stand der Technik physikalisch fundiert erfasst.
3

Modellgestützte Untersuchungen zur Grundwassergüteentwicklung in Braunkohleabraumkippen und deren Abstrom unter Berücksichtigung natürlicher Rückhalt- und Abbauprozesse

Hoth, Nils 11 July 2009 (has links) (PDF)
Die Arbeit entwickelt eine Methodik zur Gefährdungsprognose der Kippenumgegend durch stark mineralisierte, saure Kippengrundwässer. Für die Standorte Espenhain und Jänschwalde wurden Feld- und Laboruntersuchungen sowie Simulationen zur Wiederaufsättigung und zum reaktiven Stofftransport durchgeführt. Die geochemische Vorfeldbilanzierung ist ein wesentliches Werkzeug zum Verständnis der sich entwickelnden Kippenwasserbeschaffenheiten. Die Felduntersuchungen auf der Kippe Espenhain zeigen im Liegenden der Verwitterungszonen den Ablauf reduktiver Prozesse, verkoppelt mit der Umsetzung tertiärer organischer Substanz. Deren lokal nachgewiesene Abfolge bis zur Sulfatreduktion ist ein nachhaltiger Selbsthilfemechanismus bezüglich der durch Verwitterung freigesetzten Acidität und Metalle. Die weitere Untersuchung der Redoxsequenz und ihrer technischen Beeinflussbarkeit ist geboten. Innerhalb der Arbeit wird das reaktive Stofftransportprogramm PCGEOFIM verifiziert und für beide Standorte angewendet.
4

Regionalisierung von Hochwasserscheiteln auf Basis einer gekoppelten Niederschlag-Abfluss-Statistik mit besonderer Beachtung von Extremereignissen

Wagner, Michael 04 December 2012 (has links) (PDF)
Die Bemessung von Bauwerken an oder in Fließgewässern erfordert die Kenntnis des statistischen Hochwasserregimes. Beispielsweise legen Hochwasserschutzkonzeptionen häufig ein Hochwasser zu Grunde, welches in einem Jahr mit der Wahrscheinlichkeit von 1/100 auftritt. Ein extremeres Hochwasser wird für den Nachweis der Standsicherheit großer Stauanlagen nach DIN 19700-12 mit einem Hochwasser der jährlichen Eintrittswahrscheinlichkeit von 1/10000 benötigt. Ein solches Hochwasser kann bereits wegen des instationären Klimas nicht allein aus Durchflussmessdaten abgeleitet, sondern lediglich idealisiert dargestellt werden. Das resultiert nicht zuletzt daraus, dass der Mensch natürlich Zeuge eines so unwahrscheinlichen Ereignisses werden kann. Jedoch kann er die Unwahrscheinlichkeit nicht nachweisen. Jedes Berechnungsschema, mit welchem ein so unwahrscheinliches Ereignis abgeschätzt werden soll, wird nur begrenzt zuverlässig sein. Das Ziel der Arbeit ist es daher, die Schätzung etwas zuverlässiger zu gestalten. Grundsätzlich gilt, dass ein Modell umso mehr bzw. sicherere Ergebnisse liefern kann, je mehr Daten in das Modell eingehen. Direkt mit dem Durchfluss gekoppelt sind Angaben zu historischen Hochwasserereignissen bzw. qualitative Einschätzungen kleinräumiger Ereignisse. Eine wichtige Datenquelle neben den Durchflussartigen ist der mit dem Durchfluss kausal verbundene Niederschlag und dessen zu vermutendes Maximum in einem Gebiet. Wird zusätzlich regional vorgegangen, können räumliche Aspekte und Strukturen in größeren Einzugsgebieten berücksichtigt werden. Diese stärken bzw. erweitern die lokalen Berechnungsgrundlagen und gewährleisten ein räumlich konsistentes Bild. Im Umkehrschluss kann das Durchflussregime regionalisiert werden, um Informationen an nicht bemessenen Orten bereitstellen zu können. Aus den genannten erweiterten Berechnungsgrundlagen lassen sich drei Anknüpfungspunkte schließen: (i) Es muss eine sehr flexible und dennoch plausible Darstellungsmöglichkeit des statistischen Niederschlagsregimes bis zum vermutlichen Maximum formuliert werden. (ii) Das entwickelte Niederschlagsregime muss mit dem Durchflussregime gekoppelt werden, um die Informationen nutzen zu können. (iii) Die anschließende Regionalisierung muss die verschachtelte baumartige Struktur hydrologischer Einzugsgebiete berücksichtigen. Punkt (i) wird durch eine zweigeteilte Verteilungsfunktion gelöst. Damit werden die ideale Darstellung des wahrscheinlicheren Bereiches und der plausible Verlauf bis zum Maximum miteinander verbunden. Bezüglich Punkt (ii) wird ein neues Kopplungsprinzip entwickelt. Dieses basiert auf der Annahme, dass ein je nach Gebiet gültiger maximaler Scheitelabflussbeiwert existiert, welcher asymptotisch erreicht wird. Im Ergebnis erhält die Durchflussverteilung mit der Abflussbeiwertapproximation einen oberen Grenzwert in Abhängigkeit von Niederschlagsmaximum und Scheitelabflussbeiwert. Entsprechend der Vorgaben in Punkt (iii) wird die Referenzpegelmethode entwickelt. Diese basiert darauf, dass ähnliche Einzugsgebiete äquivalente Hochwasserscheitel generieren. Damit können bekannte Hochwasserereignisse eines Referenzpegels auf unbeobachtete Teileinzugsgebiete übertragen werden. Bei der Wahl des Referenzpegels wird u.a. die Topologie der Einzugsgebiete berücksichtigt. Die gesamte Strategie kann auf große Untersuchungsgebiete angewandt werden. Am Beispiel sächsischer Flüsse wird die Vorgehensweise von der Datenhomogenisierung bis hin zum extremen Hochwasserdurchfluss an einem unbeobachteten Querschnitt erläutert. / The dimensioning of different constructions at and in streams respectively requires knowlegde on the flood situation at site. For instance flood protection concepts often base on a peak discharge of the annual recurrence probability of 1/100. A more severe flood of an annual recurrence probability of 1/10000 is used to confirm the stability of large dams following DIN 19700-12. Such a flood cannot be deduced from runoff data only, but rather shown in an idealised way. It results not least on the fact, that human can witness a very improbable flood event. But is it not possible to verify the improbability. Every modelling scheme that is confronted with the deduction of such an extreme flood event will be of limited reliability. The task\'s aim will therefore be to make the estimation more reliable. Generally the more data a model involves the more trustworthy the results will become. Directly coupled with runoff are historical flood data and qualitative details of small scale flood events respectively. Aside runoff information an important data source is precipitation data, which is coupled with runoff data in a causal way, and the possible maximum precipitation. If additionally whole regions are examined it is possible to consider regional facets and structures of larger catchments. These strengthen and expand local modelling basics and provide a regional consistent result. Vice versa the flood regime can be regionalised to gain information at unobserved cross sections. Out of the described expanded modelling basics follow three links: (i) It is necessary to find a flexible but still plausible formulation of the statistical precipitation regime until the probable maximum precipitation. (ii) The formulation of point i) has to be coupled with the flood regime to include these information. (iii) The adjacent regionalisation has to account for the nested and arboreal structure of hydrological catchments. Point (i) will be solved by a split distribution function. That allows the ideal display of the more probable domain as well as the characteristics until the probable maximum. Regarding point (ii) a new principle of coupling will be developed. It bases on the assumption that a regional maximum runoff coefficient exists and it will be gained asymptotically. As a result of the runoff coefficient approximation the runoff distribution function gets an upper limit depending on maximum precipitation and runoff coefficient. Respecting the guidelines in point (iii) the reference gauge method will be developed. It bases upon the fact, that likewise catchments generate equivalent peak discharges. For this reason it is possible to carry known peak discharges of a reference gauge onto unobserved subcatchments. Among other things the choice of a reference gauge accounts for the topology of the catchments. The whole strategy can be applied to large catchments what is exemplarily shown in Saxon streams. Beginning with a data homogenisation to the point of discharges of extreme low exceedance probabilities at unobserved cross sections the whole procedure is shown.
5

Water Quality Simulation with Particle Tracking Method

Sun, Yuanyuan 18 December 2013 (has links) (PDF)
In the numerical simulation of fluid flow and solute transport in porous media, finite element method (FEM) has long been utilized and has been proven to be efficient. In this work, an alternative approach called random walk particle tracking (RWPT) method is proposed. In this method, a finite number of particles represent the distribution of a solute mass. Each particle carries a certain fraction of the total mass and moves in the porous media according to the velocity field. The proposed RWPT model is established on a scientific software platform OpenGeoSys (OGS), which is an open source initiative for numerical simulation of thermo-hydro-mechanical-chemical (THMC) processes in porous media. The flow equation is solved using finite element method in OGS. The obtained hydraulic heads are numerically differentiated to obtain the velocity field. The particle tracking method does not solve the transport equation directly but deals with it in a physically stochastic manner by using the velocity field. Parallel computing concept is included in the model implementation to promote computational efficiency. Several benchmarks are developed for the particle tracking method in OGS to simulate solute transport in porous media and pore space. The simulation results are compared to analytical solutions and other numerical methods to test the presented method. The particle tracking method can accommodate Darcy flow as it is the main consideration in groundwater flow. Furthermore, other flow processes such as Forchheimer flow or Richards flow can be combined with as well. Two applications indicate the capability of the method to handle theoretical real-world problems. This method can be applied as a tool to elicit and discern the detailed structure of evolving contaminant plumes. / Bei der numerischen Simulation von Strömung und Stofftransport in porösen Medien hat die Nutzung der Finite-Elemente-Methode (FEM) eine lange Tradition und wird sich als effizient erweisen. In dieser Arbeit wird ein alternativer Ansatz, die random walk particle tracking (RWPT) Methode vorgeschlagen. Bei diesem Verfahren stellt eine endliche Anzahl von Partikeln die Verteilung eines gelösten Stoffes dar. Jedes Teilchen trägt einen bestimmten Bruchteil der Gesamtmasse und bewegt sich in den porösen Medien gemäß des Geschwindigkeitsfeldes. Das vorgeschlagene RWPT Modell basiert auf der wissenschaftlichen Softwareplattform OpenGeoSys (OGS), die eine Open-Source-Initiative für die numerische Simulation thermo-hydro-mechanisch-chemischen (THMC) in porösen Medien darstellt. Die Strömungsgleichung wird in OGS mit der Finite-Elemente-Methode gelöst. Der Grundwasserstand wird numerisch berechnet, um das Geschwindigkeitsfeld zu erhalten. Die Partikel-Tracking-Methode löst die Transportgleichung nicht direkt, sondern befasst sich mit ihr in einer physikalisch stochastische Weise unter Nutzung des Geschwindigkeitsfeldes. Zur Berücksichtigung der Recheneffizienz ist ein Parallel Computing-Konzept in der Modell-Implementierung enthalten. Zur Simulation des Stofftransports in porösen Medien und im Porenraum wurden mehrere Benchmarks für die Partikel-Tracking-Methode in OGS entwickelt. Die Simulationsergebnisse werden mit analytischen Lösungen und andere numerische Methoden verglichen, um die Aussagefähigkeit des vorgestellten Verfahrens zu bestätigen. Mit der Partikel-Tracking-Methode kann die Darcy-Strömung gelöst werden, die das wichtigste Kriterium in der Grundwasserströmung ist. Außerdem bewältigt die Methode auch andere Strömungsprozesse, wie die Forchheimer-Strömung und die Richards-Strömung. Zwei Anwendungen zeigen die Leistungsfähigkeit der Methode bei der prinzipiellen Handhabung von Problemen der realen Welt. Die Methode kann als ein Instrument zur Aufdeckung Erkennung der detaillierte Struktur von sich entwickelnden Schadstofffahnenangewendet werden.
6

Beitrag zur Grundwassermengen- und Wärmebewirtschaftung unter dem Aspekt sich verändernder anthropogener und natürlicher Randbedingungen am Beispiel des Dresdner Elbtals

Gottschalk, Thomas 28 January 2015 (has links) (PDF)
Veränderungen des Klimas, zunehmende Grundwassernutzungen sowie die Verdichtung der städtischen Strukturen wirken sich auf Temperaturen, Mengenbilanzen und den Wasserspiegel des Grundwassers aus. Schon heute lassen sich anthropogene Einflüsse wie tief liegende Gebäudestrukturen und Einleitungen von Wasser-Wasser-Wärmepumpen auf das Temperaturniveau des Grundwassers nachweisen. Zielstellung der vorliegenden Arbeit war die Untersuchung der Auswirkungen dieser natürlichen und anthropogenen Effekte in Dresden und die Aufstellung von Ansätzen eines Grundwasser-Temperaturmanagements. Auf der Grundlage aktueller Daten zu Grundwassernutzung und zur Grundwasserneubildung wurden Ist-Zustands-Berechnungen sowie Projektionen künftiger Systemzustände mit dem Grundwassermodell Dresden realisiert. Aufgrund des von TESCH (2013) in Szenarienberechnungen projizierten Rückgangs der Grundwasserneubildung um ca. zwei Drittel bis zum Ende des 21. Jahrhunderts ist ein deutlich geringeres Grundwasserdargebot zu erwarten. Defizite in der Grundwasserbilanz werden jedoch durch einen höheren Anteil an Uferfiltrat zum Teil ausgeglichen. Wesentlich ist, dass in den Szenarienberechnungen die maximale Entnahmemenge einen größeren Einfluss auf die Grundwasserbilanzen ausübt als der projizierte Rückgang der Grundwasserneubildung. Die Gewinnung von ausreichend Grundwasser für die Deckung des Trink- und Brauchwasserbedarfs von Bevölkerung, Gewerbe und Industrie scheint auch künftig sicher. Wärmeeinträge in das Grundwasser wurden anhand von Daten aus Stichtagsmessungen der Jahre 2009 und 2011 (FUGRO HGN; 2009 und SCHOLZ UND LEVIS, 2011) identifiziert. Hierbei konnte eine Reihe von Temperaturanomalien im Stadtgebiet den Quellen eindeutig zugeordnet werden. Anhand der Untersuchung von drei Teilgebieten zeigte sich, dass das Temperaturniveau des Grundwassers im Stadtzentrum (Teilgebiet Altstadt) gegenüber den anderen untersuchten Teilgebieten (Elbbogen Übigau und Johannstadt/Striesen) erhöht ist, was zuerst auf die Vielzahl von Bauwerken zurück geführt wird, die bis in das Grundwasser reichen. Des Weiteren zeigte sich ein deutlicher Zusammenhang von Messstellendichte und Ergebnisqualität. Während in der Altstadt die Identifikation von Wärmequellen gut möglich war, sind die Ergebnisse zu anderen Teilgebieten aufgrund der deutlich geringeren Messstellendichte weniger belastbar. Temperaturen im Boden und in der Luftsäule einer Grundwassermessstelle in der Dresdner Altstadt wurden über einen Zeitraum von ca. 2 Jahren ausgewertet. Die Untersuchungen belegen die Durchprägung des Jahresgangs der Lufttemperatur bis zum Grundwasser mit einer zeitlichen Verzögerung des Eintreffens der Extremwerte von ca. drei Monaten. Mit den Untersuchungen konnte nachgewiesen werden, dass das gleichzeitig angewendete Verfahren der Messung von Temperaturen in der Luftsäule einer Grundwassermessstelle zur Identifizierung der vertikalen Temperaturverteilung im Boden praktisch anwendbar ist. Der Wärmetransport im Boden wurde mit dem Programm HYDRUS 1-D für den Ist-Zustand auf Basis der Bodentemperaturmesswerte und für die Zukunftsszenarien auf der Basis von WETTREG 2010-Daten abgebildet. Die Berechnungen ergaben im Vergleich zum Ist-Zustand erhöhte Bodentemperaturen. Besonders interessant ist, dass die Änderungssignale der Bodentemperaturen für alle berechneten Tiefen bei den Minima deutlicher ausfallen als bei den Maxima. Des Weiteren zeigt sich ein signifikanter Unterschied zwischen den Berechnungsergebnissen der beiden untersuchten Zeitscheiben (2021 bis 2050 und 2071 bis 2100). Die höheren Bodentemperaturen im Winter bieten gegebenenfalls Ansatzpunkte zur Nutzung dieses Wärmeangebots, die erhöhten Temperaturen im Sommer können gegebenenfalls zu einer Erhöhung der Temperaturen des Wassers in Abschnitten des Trinkwassernetzes mit zeitweise größeren Aufenthaltsdauern führen. Die gefundenen Ergebnisse implizieren zudem künftig höhere Grundwassertemperaturen. Die Auswirkungen von Wärmeeinträgen auf das Grundwasser wurden mit Hilfe von MODFLOW/SEAWAT-Konzeptmodellen untersucht. Für den Ist-Zustand berücksichtigen diese Konzeptmodelle bereits Wärmeeinträge durch Gebäude und thermische Grundwassernutzungen (MIX, 2013). In den Szenarienberechnungen wurden projizierte erhöhte mittlere Lufttemperaturen aufgeprägt und weitere, zum Teil fiktive Nutzungen und Wärmeeinträge durch Gebäude implementiert. Die mit dem Anstieg der Lufttemperatur erwartete Erhöhung der mittleren Grundwassertemperatur und somit die Wirkung der natürlichen Anteile der Wärmeeinträge wird für die weniger anthropogen beeinflussten Grundwasserleiterabschnitte am deutlichsten. Die Modellergebnisse zeigen, dass unter den angenommenen Voraussetzungen mittlere Grundwassertemperaturen über 20°C nicht erreicht werden und modellgestützte Managementmaßnahmen für größere Grundwasserleiterabschnitte hinsichtlich der Bewertung energetischer Nutzungen des Grundwassers zielführend sind. Aufgrund des heutigen Standes der Forschungen zur Auswirkung von Wärmeeinträgen auf die Grundwasserqualität kann noch kein Handlungszwang abgeleitet werden, gleichsam fehlt ohne verbindliche Temperaturrichtwerte ein rechtlicher Rahmen. In der Klärung dieser Fragen, der verstärkten Wärmerückgewinnung aus dem Grundwasser und dem modellgestützten Grundwasserwärmemanagement sind zukünftige Aufgabenfelder der Grundwasserbewirtschaftung erkennbar. / Climate change, the rise of energetic groundwater use and the compact city structures cause an impact to the groundwater temperatures, groundwater quantity balance and the groundwater table. Today impacts of anthropogenic influences like deep basements of big buildings and the infiltration of heated or cooled water from groundwater using heat pumps were already detected. The target of this dissertation has been the investigation of these natural and anthropogenic effects in Dresden and planning steps for a groundwater temperature management. Basing on existing data of groundwater use and recharge in Dresden, a modelling of the recent and future system status scenarios with the three-dimensional model has been done. According to the latest results of the regional climate model WETTREG 2010 and a work by Tesch about the groundwater recharge until the end of the 21st Century, a significant reduction in resources are expected. Partly the balance deficit will be regulated by bank filtration. It is an important fact that the maximum discharge rate, which is larger than the permitted real use, has a bigger influence in the balance than the lower groundwater recharge. The water catchment to supply inhabitants and industrial units seems to be secure in the future. Heat impacts to the groundwater were detected by measurements in 2011 and 2012. With the results of these measurements anomalies of the temperature field and the emission points of heat inputs were distinctly located. Based on the investigation of three subareas, a higher level of groundwater temperatures in the city center (subarea Altstadt) compared to the other subareas (Übigau and Jogannstadt/Striesen) was detected. The reason of this fact is the multitude of big buildings which are reaching the aquifer. The investigation has also showed the relationship between the quantity of the measuring points and the quality of the results. In the subarea Altstadt an identification of heat inputs could be very well found. The results in the other subareas with a lower amount of sampling points have not the same level of validity. Information from time series over two years about soil and air column temperatures of a close-by groundwater measurement point were analyzed. The research documents the heat transport from the air to the groundwater with a retardation of the extreme values along about three months. With this analysis, the method of measurement air column temperatures in groundwater measurement points aiming to identify the vertical soil temperature distribution could be attested. The measured heat transport in the unsaturated soil was reproduced with the HYDRUS 1-D program. After this, future scenarios on the basic of WETTREG 2010 results were computed. The findings are higher soil temperature levels in the future with higher alteration signals in the minimum than in the maximum values. The modeling results have also showed a significant difference in the investigated time series (2021 - 2050 and 2071 - 2100). The higher temperatures in winter could be a chance to use this heat. In the summer it could partly affect parts of the water supply. Furthermore the findings implicate higher ground water temperatures in the future. To investigate heat impacts to the ground water concept, models of MIX (2013) were used for the heat transport in the aquifer which combines the heat impact of buildings and heat pumps with the natural air temperature rise. The WETTREG2010 result (air temperatures), heat inputs and possible new energetic groundwater use systems were implemented in the conceptual models. Results of the modeling has showed that the expected rise of the ground water temperature will be more significant for the less anthropogenic influenced parts of the urban aquifer than the parts with high initial level of heat pollution. In the model results, the temperatures do not reach mean values of 20°C (LAWA guideline). An important finding is also that these models could be used for a more efficient groundwater heat management and for the evaluation of energetic groundwater projects of its use. Because of the recent stand of research on the impacts of higher ground water temperatures to the ground water quality, a need for action can’t be indicated at the moment. At present there are no guideline values neither standard of law for the energetic use of groundwater. This facts and the question of heat recycling from the urban aquifer are fields for the groundwater management in the future.
7

Submarine and Lacustrine Groundwater Discharge:

Petermann, Eric 12 June 2018 (has links) (PDF)
The discharge of groundwater into surface water bodies is a hidden, but significant pathway for the input of water and matter into lakes, rivers, estuaries and the coastal sea. Since groundwater is most often characterized by higher levels of nutrients or heavy metals, its discharge has often a crucial effect on the surface water body´s chemistry and the ecosystem health as well as on the related ecosystem service supply. For instance, groundwater-derived nutrient inputs are essential to fuel primary productivity, but if critical thresholds are exceeded groundwater-derived nutrient inputs can cause eutrophication, which may trigger harmful algal blooms or the creation of oxygen minimum zones – a serious threat to aquatic life. This thesis focuses on quantifying submarine and lacustrine groundwater discharge by applying environmental tracer based methods with emphasis on radionuclide (radon and radium isotopes) and stable water isotope (δ18O, δ2H) techniques. These tracers are suitable for determining groundwater discharge as they show distinct concentration and isotope ratio gradients between groundwater and the receiving surface water. Four studies are presented in this thesis: (1) The quantification of the response delay of the mobile radon detector RAD7 applied for radon-in-water mapping. The response delay of the mobile radon-in-air detector RAD7 is determined for two detection set-ups (radon extraction via RADaqua and via a membrane module) as well as for a range of water flow rates. For the membrane module the response delay is less pronounced compared to the RADaqua. For instance, at a water flow rate of 1 l min-1 the peaks of the instruments recordings lag behind the radon-in-water concentrations by ~10 min for the membrane module and by ~18 min for the RADaqua. Further, it was demonstrated that faster water flow rates decrease the response delay. An algorithm is presented that allows the inverse calculation of radon-in-water concentrations from RAD7 records for the described detection set-ups and water flow rates. Thus, it allows a more precise localization of radon-in-water anomalies and, consequently a more precise localization of groundwater discharge areas. (2) Determination of submarine groundwater discharge into a large coastal bay (False Bay, South Africa) SGD consists generally of two components: (a) fresh terrestrial SGD (FSGD) driven by the inland hydraulic gradient and (b) seawater re-circulation (RSGD) through the coastal aquifer driven by seaward effects such as tidal pumping. A bay-wide radon mapping resulted in identification of a SGD site, where subsequently detailed investigations were conducted. At this SGD site a salt and a radon mass balance were applied consecutively for determining FSGD and total SGD, respectively. RSGD was inferred from the difference between FSGD and total SGD. For the radon mass balance, new approaches for calculating the radon degassing and mixing loss were proposed. The tracer mass balance revealed median FSGD of 2,300 m³ d-1 or 0.9 m³ d-1 per m coastline and median RSGD of 6,600 m³ d-1 or 2.7 m³ d-1 per m coastline. The FSGD rate was validated using (a) a hydrological model for calculating the groundwater recharge rate and (b) a groundwater flow model for delineating the subsurficial FSGD capture zone. This validation supported the tracer based findings. The relevance of this study is foremost the presentation of new methodological approaches regarding the radon mass balance as well as the validation of FSGD under consideration of hydrological and hydrogeological information. (3) Differentiation of fresh and re-circulated submarine groundwater discharge in an estuary (Knysna Estuary, South Africa) Knysna Estuary is a more complex system than False Bay since besides seawater, FSGD and RSGD also river water mixes within the estuary. Both FSGD and RSGD were differentiated by applying a mixing analysis of the estuary water. For this purpose, an end-member mixing analysis (EMMA) was conducted that simultaneously utilizes radon and salinity time series of estuary water to determine fractions of the end-members seawater, river water, FSGD and RSGD. End-member mixing ratio uncertainty was quantified by stochastic modelling (Monte Carlo simulation) under consideration of end-member characterization uncertainty. Results revealed highest FSGD and RSGD fractions in the estuary during peak low tide. Median fractions of FSGD and RSGD were 0.2 % and 0.8 % of the estuary water near the mouth over a 24 h time-series. In combi-nation with a radon mass balance median FSGD of 46,000 m³ d-1 and median RSGD of 150,000 m³ d-1 were determined. By comparison to other sources, this implies that the SGD is a significant source of dissolved inorganic nitrogen (DIN) fluxes into the estuary. This study demonstrates the ability of EMMA to determine end-member fractions in a four end-member system under consideration of end-member uncertainty. Further, the importance of SGD for the water and DIN budget of Knysna Estuary was shown. (4) Quantification of groundwater discharge and water residence time into a groundwa-ter-fed lake (Lake Ammelshainer See, Germany). The presented approach utilizes the stable isotopes of water (δ18O, δ2H) and radon for determining long-term average and short-term trends in groundwater discharge rates. The calculations were based on measurements of isotope inventories of lake and groundwater in combination with climatic and isotopic monitoring data (in precipita-tion). The results from steady-state annual isotope mass balances for both δ18O and δ2H are consistent and reveal an overall long-term average groundwater discharge that ranges from 2,800 to 3,350 m³ d-1. These findings were supported by the good agree-ment of the simulated annual cycles of δ18O and δ2H lake inventories utilizing the de-termined groundwater discharge rates with the observed lake isotope inventories. However, groundwater discharge rates derived from radon mass balances were signifi-cantly lower, which might indicate a distinct seasonal variability of the groundwater discharge rate. This application shows the benefits and limitations of combining δ18O/δ2H and radon isotope mass balances for the quantification of groundwater con-nectivity of lakes based on a relatively small amount of field data accompanied by good quality and comprehensive long-term meteorological and isotopic data (precipitation). This thesis presents important methodological achievements with respect to radon and stable water isotope mass balances, uncertainty quantification, geochemical differentia-tion between FSGD and RSGD and validation of FSGD. Further, first SGD estimates are reported for False Bay and Knysna Estuary in South Africa. / Der Austritt von Grundwasser in Oberflächengewässer stellt einen unsichtbaren Ein-tragspfad von Wasser und Stoffen in Seen, Flüsse, Ästuare und das küstennahe Meer dar. Die Konzentrationen vieler Stoffe wie beispielsweise von Nährstoffen und Schwermetallen ist im Grundwasser im Allgemeinen signifikant höher als in Oberflächengewässern. Daher können selbst volumetrisch verhältnismäßig kleine Grundwasseraustritte entscheidenden Einfluss auf Wasserchemie und den Gesundheitszustand des aquatischen Ökosystems haben, womit Auswirkungen auf die Bereitstellung von Ökosystemleistungen verbunden sein können. Beispielsweise sind grundwasserbürtige Nährstoffeinträge eine entscheidende Steuergröße für die Primärproduktivität. Überschreiten diese grundwasserbürtigen Nährstoffeinträge jedoch einen Schwellenwert, kann es zur Eutrophierung des Oberflächengewässers kommen. Dies wiederum kann toxische Algenblüten oder die Entstehung von Sauerstoffminimumzonen zur Folge haben und das aquatische Leben bedrohen. Diese Dissertation beschäftigt sich mit Methoden zur Quantifizierung von Grundwas-sereinträgen in den küstennahen Ozean, Ästuare und in Seen. Dabei stützt sich diese Arbeit primär auf Umwelttracer, vor allem auf Radionuklide (Radon- und Radium-Isotope) sowie die stabilen Isotope des Wassers (δ18O, δ2H). Diese Umwelttracer sind für die untersuchten Systeme in besonderer Weise geeignet, da zwischen Grundwasser und Oberflächenwasser ein ausgeprägter Gradient hinsichtlich Konzentration bzw. Isotopensignatur besteht. Vier Einzelstudien stellen den Kern dieser Arbeit dar: (1) Die Quantifizierung der Antwortverzögerung des mobilen Radon-Detektors RAD7, an-gewendet für die Radon-in-Wasser-Kartierung. Die Antwortverzögerung des mobilen Radon-in-Luft-Detektors RAD7 wurde für zwei Messanordnungen (Radonextraktion via RADaqua und via Membranmodul) sowie für einen Bereich von Wasserdurchflussraten bestimmt. Für die Radonextraktion via RADaqua ist die Antwortverzögerung stärker ausgeprägt als für das Membranmodul. Bei einer Wasserdurchflussrate von 1 l min-1 treten die Peaks der aufgezeichneten Werte ~10 min nach den Radon-in-Wasser Peaks auf, während die Verzögerung bei Radonextraktion via RADaqua ~18 min beträgt. Weiterhin wurde eine Reduktion der Antwortverzögerung mit zunehmenden Wasserdurchflussraten beobachtet. Der vorgestellte Algorithmus ermöglicht in Kombination mit den berechneten Radontransfer-Koeffizienten die inverse Modellierung der Radon-in-Wasser-Konzentrationen, basierend auf den RAD7-Messwerten. Dies ermöglicht beispielsweise eine genauere Lokalisierung von räumlichen Radon-in-Wasser Anomalien und folglich eine präzisere Bestimmung von Grundwasseraustrittsstellen. (2) Quantifizierung untermeerischer Grundwasseraustritte in eine große Meeresbucht (False Bay, Südafrika) Untermeerische Grundwasseraustritte (“Submarine Groundwater Discharge” – SGD) bestehen aus zwei Komponenten: (a) Süßwasser-SGD (“Fresh SGD” – FSGD) angetrieben durch den meerwärtsgerichteten hydraulischen Gradienten, und (b) re-zirkuliertem SGD („re-circulated SGD“ – RSGD), verursacht durch Prozesse wie gezeitengesteuerte Infiltration von Meerwasser in den Aquifer. Eine Radon-Kartierung entlang der gesamten Küstenlinie der Bucht führte zur Lokalisierung von SGD, woraufhin dort vertiefende Untersuchungen durchgeführt wurden. In diesem Bilanzgebiet wurden eine Salz- und eine Radon-Massenbilanz durchgeführt, um FSGD bzw. Gesamt-SGD zu bestimmen. RSGD wurde aus der Differenz von FSGD und SGD abgleitet. Für die Radon-Massenbilanz wurden neue Ansätze für die Berechnung der Radon-Entgasung in die Atmosphäre und des Radon-Mischungsverlustes mit küstenfernerem Wasser präsentiert. Die Tracer-Massenbilanzen ergaben einen FSGD-Median von 2.300 m³ d-1 bzw. 0,9 m³ d-1 pro Meter Küstenlinie und einen RSGD-Median von 6.600 m³ d-1 bzw. 2,7 m³ d-1 pro Meter Küstenlinie. Die FSGD-Rate wurde mit Hilfe eines hydrologischen Modells zur Abschätzung der Grundwasserneubildungsrate und eines Grundwasserströmungsmodells zur Abgrenzung des unterirdischen Einzugsgebiets des Bilanzraums bestimmt. Diese unabhängige Methode bestätigte die Tracer-basierten Ergebnisse. Die Bedeutung dieser Studie besteht zuvorderst in der Vorstellung neuer methodischer Ansätze bei der Radon-Massenbilanzierung sowie in der Validierung von FSGD unter Berücksichtigung hydrologischer und hydrogeologischer Daten. (3) Unterscheidung von FSGD und RSGD in einem Ästuar (Knysna Ästuar, Südafrika). Das Knysna-Ästuar ist hinsichtlich der Bestimmung von SGD im Vergleich zur False Bay ein komplexeres System, da sich neben Meerwasser, FSGD und RSGD auch Flusswasser in signifikanten Mengen im Ästuar mischt. FSGD- und RSGD-Anteile wurden anhand der chemischen Zusammensetzung des Ästuarwassers unterschieden. Für diesen Zweck wurde eine End-Member-Mischungsanalyse (EMMA) auf Grundlage von Radon- und Salinitätszeitreihen des Ästuarwassers durchgeführt. Durch ein Optimierungsverfahren wurde die Mischung der End-member Meerwasser, Flusswasser, FSGD und RSGD für jeden Zeitschritt mit dem Ziel der bestmöglichen Übereinstimmung mit den gemessenen Radon- und Salinitätszeitreihen bestimmt. Die Unsicherheit in der Bestimmung der End-member-Anteile wurde durch stochastische Modellierung (Monte-Carlo-Simulation) quantifiziert. Die höchsten Anteile von FSGD und RSGD traten bei Niedrigwasser auf. Die mittleren Anteile von FSGD und RSGD betrugen in der Nähe der Ästuarmündung 0,2 % und 0,8 % während einer 24-stündigen Zeitreihenmessung. Diese Informationen führten in Kombination mit einer Radon-Massenbilanz zur Bestimmung eines mittleren FSGD von 46.000 m³ d-1 sowie eines mittleren RSGD von 150.000 m³ d-1. Diese Ergebnisse implizieren unter Einbeziehung weiterer Daten, dass SGD ein bedeutender Pfad für den Eintrag von gelöstem anorganischem Stickstoff (DIN) in das Knysna-Ästuar darstellt. Diese Studie zeigt das Potenzial einer EMMA für die Bestimmung der Anteile von vier End-membern unter Nutzung von zwei gemessenen Variablen und unter Berücksichtigung der End-member-Unsicherheit. Außerdem wurde die Bedeutung von SGD für das Wasser- und DIN-Budget des Knysna-Ästuars aufgezeigt. (4) Quantifizierung von Grundwasseraustrittsrate und Wasserverweilzeit eines grundwas-sergespeisten Sees (Ammelshainer See, Deutschland). Der vorgestellte Ansatz nutzt die stabilen Isotope des Wassers (δ18O, δ2H) und von Ra-don für die Bestimmung des mittleren langfristigen sowie der aktuellen Grundwas-seraustrittsrate. Die Berechnungen beruhen auf Abschätzungen des Isotopeninventars anhand von Feldmessungen, der Isotopensignatur des Grundwassers sowie ergänzen-den Klima- und Isotopen-Daten (Niederschlag). Die Ergebnisse einer stationären Isoto-pen-Massenbilanz für δ18O und δ2H sind übereinstimmend und ergaben einen langfristigen mittleren Grundwasseraustritt von 2.800 bis 3.350 m³ d-1. Dieses Ergebnis wurde für die Modellierung des jährlichen Zyklus des Isotopeninventars im See benutzt, welches mit den gemessenen Isotopenwerten konsistent ist. Die auf Grundlage einer Radon-Massenbilanz abgeleiteten aktuellen Grundwasserzutrittsraten lagen im Gegensatz dazu deutlich niedriger, was jedoch nicht notwendigerweise einen Widerspruch darstellen muss, sondern vielmehr ein Hinweis auf eine möglicherweise ausgeprägte saisonale Variabilität des Grundwasseraustritts darstellen kann. Diese Studie zeigt Möglichkeiten und Grenzen der Anwendung von einer Kombination aus δ18O/δ2H- und Radon-Massenbilanzen für die Bestimmung der Grundwasseranbindung von Seen mit einem vergleichsweise geringen Messaufwand unter Nutzung qualitativ hochwertiger und umfangreicher Klima-und Isotopen-Daten (Niederschlag). Diese Dissertation präsentiert wichtige methodische Fortschritte hinsichtlich der An-wendung von Radon- und stabilen Isotopen-Massenbilanzen, der Quantifizierung von Unsicherheit, der Unterscheidung von FSGD und RSGD anhand geochemischer Daten und der Validierung von FSGD. Außerdem wurden erstmals SGD-Raten für Standorte in Südafrika (False Bay und Knysna-Ästuar) vorgestellt.
8

Prediction of antibiotic mass flows in urban catchments and their environmental prioritization

Marx, Conrad 17 October 2016 (has links) (PDF)
Urban emissions of antibiotics into the environment have the potential to adversely affect terrestrial and aquatic organisms. Developed standardized test methods allow the quantification of the resulting ecotoxicological risk, which strongly relies on a comprehensive situation analysis by predicting or measuring a representative antibiotic concentration of interest. Predicting the input loads of antibiotics to wastewater treatment plants using secondary input data (e.g. prescriptions) is a reasonable method if no analytical data is available. The absence of such data poses the question of an aquired reasonable sample quantity to capture local seasonal differences in prescriptions as well as flow conditions within the catchment area. Both, the theoretical and measurement based determination of environmental concentrations have been scarcely verified in practice. Hence, high resolution prescription data in combination with an extensive monitoring campaign at the wastewater treatment plant Dresden-Kaditz (WWTP) were used as a basis to evaluate the reliability of predicting and measuring urban antibiotic emissions. As expected, the recovery of antibiotic input loads strongly varies among substances. The group of macrolides as well as sulfamethoxazole and trimethoprim were almost fully recovered whereas nearly all substances of the beta-lactam family exhibit high elimination rates during the wastewater transport in the sewer system. Yet other antibiotics (e.g. fluoroquinolones) show distinct fluctuations through the year, which was not obvious from relatively constant prescriptions. The latter substances are an example that available data are not per se sufficient to predict the actual release into the environment which, in certain cases, emphasizes the necessity of adequate measuring campaings. The extensive data pool of this study was hence used to calculate the necessary number of samples to determine a representative annual mean load to the WWTP. Based on the applied approach, a minimum number of 20 to 40 samples per year is proposed to reasonably estimate a representative annual input load of antibiotics and other micropollutants. Regarding the WWTP, the mass flow analysis revealed that macrolides, clindamycin/ clindamycin-sulfoxide and trimethoprim were mainly released with the effluent, while penicillins, cephalosporins as well as sulfamethoxazole were partly degraded in the studied WWTP. Levofloxacin and ciprofloxacin are the only antibiotics under investigation with a significant mass fraction bound to primary, excess and digested sludge. In this context, the sludge concentrations are considered to be highly inconsistent which leads to questionable results. It remains unclear whether the inconsistencies are due to insufficiencies in sampling and/or analytical determination or if the fluctuations can be considered reasonable for digesters. Subsequently, verified antibiotic loads were evaluated regarding their ecotoxicological effects in the aquatic environment. Two approaches were applied (1) to address the ecological impact on individual trophic levels algae, daphnia and fish, and (2) to assess the possible synergistic potential of antibiotic combinations. Ciprofloxacin, levofloxacin and the group of cephalosporins showed to significantly affect the aquatic environment. They either have the highest impact on (one of) the lowest trophic level(s) or disproportionately increase the ecotoxicological risk due to their synergistic characteristics. In this regard, the deficiencies regarding the input prediction of these antibiotics is of particular concern. The underestimation of such critical mass flow conditions weakens the approach of assessing environmental risks on the basis of secondary data like prescriptions. Hence, efforts must be made to further develop the projection model by improving the quality of secondary data, identifying additional emitters and understanding possible retention and degradation dynamics of antibiotics within the sewer system. / In der Humanmedizin eingesetzte Antibiotika werden im menschlichen Körper nicht vollständig metabolisiert und gelangen über die Ausscheidungen in das kommunale Abwasser. In der Kläranlage erfolgt nur eine unvollständige Elimination dieser Stoffe, so dass der Kläranlagenablauf einen Hot Spot für Antibiotikaemissionen in die Umwelt darstellt. Das induzierte ökotoxikologische Risiko kann anhand standardisierter Testverfahren und allgemein anerkannter Bewertungsansätze für Einzelsubstanzen abgeschätzt werden. Erfolgt jedoch die Betrachtung von Antibiotikagemischen, wie es für den gereinigten Ablauf einer Kläranlage sinnvoll ist, sind aufgrund zumeist unspezifischer Wirkmechanismen und dem Mangel an repräsentativen Daten eine Reihe von Vereinfachungen und Annahmen zu treffen. Es besteht in der Folge die Gefahr einer Unterschätzung des durch Substanzgemische hervorgerufenen ökotoxikologischen Risikos. Eine vielversprechende Möglichkeit den Entscheidungsprozess über mögliche Vermeidungs- und Eliminationsmaßnahmen zu unterstützen besteht in der Priorisierung von Antibiotika entsprechend ihres Effektpotentials. Hierbei sind Substanzen zu identifizieren, die den größten Einfluss auf die Nahrungskette im Gewässer bzw. das höchste (negative) Synergiepotential mit anderen Substanzen aufweisen. Die Verringerung dieser Substanzen führt zu einer hohen ökologischen Effektivität und Effizienz der eingesetzten Mittel. Wie im Fall des klassischen Bewertungsansatzes, ist auch für den Priorisierungsansatz eine umfängliche und zuverlässige Situationsanalyse die Grundvoraussetzung für verwertbare Ergebnisse. Die Situationsanalyse beruht auf der analytischen Bestimmung bzw. der Abschätzung von emittierten Antibiotikafrachten zur Berechnung von repräsentativen Umweltkonzentrationen. Analytisch ermittelte Umweltkonzentrationen vieler Antibiotika weisen aufgrund saisonaler Verschreibungsmuster eine hohe zeitliche und räumliche Variabilität auf. Die für eine adäquate Erfassung der Situation notwendigen Messkampagnen sind kostenintensiv, wobei die tatsächlich notwendige Häufigkeit der Probenahme von zumeist nicht hinreichend bekannten substanzspezifischen Informationen, wie der chemischen Stabilität im Rohabwasser und der saisonal beeinflussten Applikation, abhängt. Alternativ können Antibiotikaeinträge in die Kanalisation anhand von Verschreibungsdaten abgeschätzt und mit Hilfe von Stoffflussanalysen (SFA) zur ökotoxikologischen Bewertung herangezogen werden. Eine vom Umfang befriedigende, direkte Gegenüberstellung von prognostizierten und analytisch ermittelten Frachten ist bisher jedoch nicht erfolgt, so dass die Verifizierung dieses Ansatzes noch aussteht. Für den Fall einer bestehenden Verschreibungspflicht für Antibiotika besitzen Verschreibungsdaten eine vergleichsweise hohe zeitliche und räumliche Informationsgüte. In Verbindung mit einer an diese Datenqualität angepassten Messkampagne, ergibt sich die Möglichkeit einer detaillierten SFA mit substanzspezifischer Bewertung der Eignung des Prognoseansatzes. Die am Beispiel der Stadt Dresden durchgeführte Bewertung des Prognoseansatzes fußt auf einer 15-monatigen Messkampagne und den für das Einzugsgebiet der Zentralkläranlage Dresden-Kaditz verfügbaren Verschreibungsdaten der AOK PLUS. Erwartungsgemäß ergibt der Abgleich von erwarteten und analytisch ermittelten Frachten eine starke Variation der für den Zulauf der Kläranlage ermittelten Wiederfindungsdaten verschiedener Substanzen. Die analytisch ermittelten Frachten von Sulfamethoxazol, Trimethoprim sowie der Gruppe der Makrolid-Antibiotika entsprechen nahezu den prognostizierten Mengen. Die Beta-Laktam-Antibiotika unterliegen bereits während des Abwassertransports einer umfänglichen, zumeist biologisch bedingten, Elimination, was zu hohen Unterbefunden im Zulauf der Kläranlage führt. Andere Substanzen hingegen (z.B. Fluorchinolone) weisen messtechnisch eine signifikante Jahresdynamik auf, die aufgrund der weitgehend konstanten Verschreibung in dieser Ausprägung nicht zu erwarten ist. Die Auswertung zuletzt genannter Substanzen zeigt deutlich, dass die Nutzung von Verschreibungsdaten nicht per se ausreicht, um die Emission von Antibiotika (und anderer Pharmazeutika) sowie die sich daraus ergebenden Umweltkonzentrationen mit ausreichender Sicherheit prognostizieren zu können. Für eine nachgelagerte ökotoxikologische Bewertung ist in diesen Fällen die Durchführung von Messungen unumgänglich. Zur effizienten Planung derartiger Kampagnen wurde der umfassende Datenpool dieser Studie hinsichtlich der erforderlichen Probenanzahl zur Bestimmung einer repräsentativen mittleren Jahresfracht ausgewertet. Es ergibt sich ein Minimum von 20 bis 40 homogen über das Jahr verteilten Proben, um die jährlich in die Kläranlage eingetragene Fracht an Antibiotika bzw. anderer Mikroschadstoffe mit ausreichender Sicherheit abschätzen zu können. Im Rahmen der SFA in der Kläranlage Dresden-Kaditz wird deutlich, dass Makrolide, Clindamycin und dessen Humanmetabolit Clindamycin-Sulfoxid sowie Trimethoprim in der nahezu keiner Elimination unterliegen, wohingegen Penizilline, Cefalosporine und auch Sulfamethoxazol teilweise bis vollständig abgebaut werden. Mit Levofloxacin und Ciprofloxacin handelt es sich um die einzigen untersuchten Antibiotika, welche zu einem signifikanten Massenanteil an Primär-, Überschuss- und Faulschlamm gebunden vorgefunden werden. Aufgrund der hohen Relevanz dieses Eliminationspfades für die zuvor genannten Antibiotika bedarf die Beobachtung von z. T. widersprüchlichen Schwankungen einer kritischen Betrachtung der Ergebnisse. Es ist nicht abschließend geklärt, ob die beobachteten Fluktuationen auf eine unzureichende Qualität der Probenahme und/oder der Analytik zurückzuführen sind oder sich die Schwankungen in einem für Faulbehälter tolerierbaren Bereich befinden. Im Anschluss an die verifizierten Antibiotikaemissionen erfolgte die Priorisierung der betrachteten Antibiotika nach ihrem ökotoxikologischen Effektpotential. Zum einen wurde der ökologische Einfluss auf verschiedene, die Nahrungskette bildende trophische Ebenen (Alge, Daphnie, Fisch) untersucht. In Anlehnung an die humanmedizinische Kombinationstherapie erfolgte im zweiten Ansatz die Beurteilung der Antibiotika hinsichtlich ihres möglichen Potentials zur Verstärkung von negativen Effekten durch das gleichzeitige Auftreten mit anderen Substanzen. Für Ciprofloxacin, Levofloxacin und die Gruppen der Makrolide und Cefalosporine konnten signifikante Beeinträchtigungen der aquatischen Umwelt nachgewiesen werden. Diese Stoffe und Stoffgruppen führten im Rahmen der untersuchten Substanzen entweder zur höchsten Schadwirkung gegenüber der niedrigsten trophischen Ebene oder besitzen das höchste Synergiepotential in Kombination mit anderen Substanzen. Die Auswertung der SFA bestätigt die grundsätzliche Eignung der Verschreibungsdaten sowie des entwickelten Prognosemodells zur Vorhersage von Antibiotikaemissionen im urbanen Raum. Die Stoffflussanalyse stellt somit ein strategisches, im Vergleich zur Messung kostengünstiges Instrument zur Identifikation von Hot Spots der Antibiotikaemission dar und erleichtert die Entscheidungsfindung für monetär aufwendige Reduktionsmaßnahmen am Ort der Entstehung oder in der Kläranlage (z.B. 4. Reinigungsstufe). Die Vorgehensweise zur Priorisierung von Substanzen hinsichtlich ihres ökotoxikologischen Effektpotentials eignet sich sehr gut, Antibiotika mit dem höchsten Schadpotential zu identifizieren. Die Verschneidung der Kenntnis dieser Substanzen mit den Ergebnissen der SFA macht deutlich, dass mit Ausnahme der Makrolide, alle ökotoxikologisch priorisierten Antibiotika eine mangelhafte Prognosefähigkeit aufweisen. Die unvollständige Abbildung kritischer Stoffströme, wie z.B. Frachtspitzen, führt insbesondere im Fall der ökotoxikologisch priorisierten Substanzen zu einer Minderung der Aussagekraft des auf Verschreibungsdaten beruhenden Prognoseansatzes. An diesem Punkt ist in zukünftigen Betrachtungen anzusetzen, um die Qualität von Verschreibungsdaten zu verbessern, potentiell nicht erfasste Emittenten in die Betrachtungen einzubeziehen, sowie die Dynamik der Rückhalte- und Eliminationsprozesse in der Kanalisation adäquat beschreiben zu können. Die ergänzende Betrachtung weiterer Anlagentechnologien (z.B. Festbettreaktoren) kann zur Bestätigung der am Beispiel der Kläranlage Dresden-Kaditz gewonnenen Ergebnisse beitragen bzw. Unterschiede bei der Elimination von Antibiotika das Potential, die Problematik der Antibiotika und anderer Mikroschadstoffe bereits während der Planung von Abwasseranlagen berücksichtigen zu können.
9

Reactive transport simulation of contaminant fate and redox transformation in heterogeneous aquifer systems

Jang, Eunseon 28 August 2017 (has links) (PDF)
The transport of contaminants in groundwater system is strongly influenced by various aquifer heterogeneity factors such as spatial aquifer heterogeneity of hydraulic conductivity and reactive substances distribution. The contaminants transport can be simulated by using numerical reactive transport models, and their fate can be possibly even predicted. Furthermore, reactive transport modeling is an essential tool to get a profound understanding of hydrological-geochemical complex processes and to make plausible predictions of assessment. The goal of this work is to improve our understanding of the groundwater contaminants fate and transport processes in heterogeneous aquifer systems, with a focus on nitrate problems. A large body of knowledge of the fate and transport of nitrogen species has been achieved by previous works, however, most previous models typically neglect the interrelation of physical and chemical aquifer heterogeneities on the contaminant fate and redox transformation, which is required for predicting the movement and behavior of nitrate and quantifying the impact of uncertainty of numerical groundwater simulation, and which motivates this study. The main research questions which are answered in this work are how aquifer heterogeneity influences on the nitrate fate and transport and then, what is the most influential aquifer heterogeneity factor must be considered. Among the various type of aquifer heterogeneity, physical and chemical aquifer heterogeneities are considered. The first part of the work describes groundwater flow system and hydrochemical characteristics of the study area (Hessian Ried, Germany). Especially, data analyses are performed with the hydrochemical data to identify the major driving force for nitrate reduction in the study area. The second part of the work introduces a kinetic model describing nitrate removal by using numerical simulation. The resulting model reproduces nitrate reduction processes and captures the sequence of redox reactions. The third and fourth parts show the influence of physical and chemical aquifer heterogeneity with varying variance, correlation length scale, and anisotropy ratio. Heterogeneous aquifer systems are realized by using stochastic approach. Results, in short, show that the most influential aquifer heterogeneity factors could change over time. With abundant requisite electron donors, physical aquifer heterogeneity significantly influences the nitrate reduction while chemical aquifer heterogeneity plays a minor role. Increasing the spatial variability of the hydraulic conductivity increases the nitrate removal efficiency of the system in addition. If these conditions are reversed, nitrate removal efficiency varies by the spatial heterogeneity of the available initial electron donor. The results indicate that an appropriate characterization of the physical and chemical properties can be of significant importance to predict redox contamination transport and design long-term remediation strategies and risk assessment.
10

Combining measurements, remote sensing and numerical modelling to assess multi-scale flow dynamics in groundwater-dependent environmental systems

Nixdorf, Erik 04 June 2018 (has links) (PDF)
Groundwater flow modelling provides an important quantitative instrument for addressing issues related to the quantity and quality of groundwater and the connected water resources. Consequently, groundwater flow models have been developed and used ubiquitously in science to deepen the understanding of subsurface processes and their drivers as well as management and planning tools. The present work investigates how numerical models can be linked to field investigations and public databases to quantitatively approach questions in the area of groundwater research. The primary goal is to develop new, efficient ways to overcome limitations of the individual hydrological concepts for solving specific hydrological problems and to increase the understanding of practical applicability of different methods. For this purpose, tailor-made approaches were developed for different study areas covering diverse spatial scales: the hydrology of a small mining lake, the riparian aquifer at the scale of a single meander as well as the aquifer systems of a large-scale river basin in China. The first part of the work deals with the physical and mathematical modelling of water constituents balance in a meromictic mining lake in Lusatia. The capability of using a rather simple mass-balance model based on a sufficient dataset of field data to evaluate lake stratification and lake-groundwater interaction were shown. In the second part, a transient numerical groundwater flow model was developed for the riparian aquifer of a stream meander and was calibrated by three different salt tracer tests. The model was used to proof the reliability of subsurface travel times derived from time series analysis and to give insights in the riparian zone dynamics during changing hydraulic gradients. The third part of the work describes the methodology to conduct risk assessment of groundwater contamination on the large catchment scale of the Songhua River in China. A comprehensive literature study was conducted to get an overview about measurement data on water quality data in China. A three-dimensional numerical flow and mass transport model was applied to access the flow and matter transport dynamics in the aquifer system of a sub-basin considering changing groundwater exploitation scenarios. Consequently, numerical groundwater modelling was combined with processed remote sensing and web mapping service data to overcome field data limitations and to derive groundwater vulnerability, groundwater hazard and groundwater risk maps for the entire Songhua River Basin. Summarizing, this doctoral thesis could develop new methods of combining field measurements, data assimilation and aggregation from various sources and groundwater modelling strategies and successfully apply these methods to find solutions on problems of multiple scales and across water systems. / Die Grundwassermodellierung stellt eine wichtige wissenschaftliche Methode zur quantitativen Analyse von Fragestellungen zum Schutz der Menge und Güte der Grundwasserressourcen sowie der angeschlossenen Wasserkörper dar. Dementsprechend werden Grundwassermodelle sowohl für Planungs- und Bewertungszwecke im Wasserressourcenmanagement als auch zur wissenschaftlichen Erforschung der Prozesse im Untergrund entwickelt und angewendet. Die vorliegende Arbeit untersucht in diesem Rahmen, wie numerische Modelle, Feldmessungen und Daten generiert aus Fernerkundungsdaten und Webplattformen systematisch verknüpft werden können, um Fragestellungen im Bereich der Grundwasserforschung quantitativ zu beantworten. Das Ziel der Arbeit ist es neue effiziente Abläufe zu entwickeln, die die Limitierung der einzelnen Methoden überwinden und diese auf deren Anwendbarkeit für die Lösung spezifischer hydrologischer Probleme zu analysieren. Zu diesem Zweck wurden in dieser Doktorarbeit fallspezifische Lösungen für verschiedene Untersuchungsgebiete entwickelt, die sowohl in der räumlichen Skale als auch in den zu untersuchenden hydrologischen Fragestellungen eine große Diversität aufweisen. Im ersten Teil der Arbeit wurde die Massenbilanz von Wasserinhaltsstoffen in einem meromiktischen Tagebaurestsee im Lausitzer Revier durch physikalische und mathematische Modellierungsmethoden untersucht. Dabei konnte gezeigt werden, dass auf Basis einer gewonnenen mehrjährigen Zeitreihe von Messdaten ein einfaches Massenbilanzmodell in der Lage ist, sowohl Seeschichtungs- als auch Grundwasseraustauschdynamiken quantitativ zu beschreiben. Der zweite Teil der Arbeit umfasst die Entwicklung eines transienten numerischen Grundwassermodells für den quartären Uferaquifer im Bereich eines Flussmäanders der Selke welches anhand von Daten aus mehreren Salztracertests kalibriert wurde. Das Modell wurde dafür verwendet die transienten Verweilzeiten in der gesättigten Zone des Mäanderbogens unter dem Einfluss dynamischer hydraulischer Bedingungen zu untersuchen. Die Ergebnisse wurden im Anschluss mit Verweilzeiten verglichen, die aus der Analyse der zeitlichen Verschiebung von gemessenen elektrischen Leitfähigkeitszeitreihen zwischen Fluss und Grundwassermessstellen gewonnen wurden. Durch dieses kombinierte Verfahren konnten sowohl die Beschränkungen der zeitreihenbasierten Verweilzeitberechnung aufgezeigt als auch ein tieferes Systemverständnis für die Interaktionsdynamiken zwischen Grund- und Flusswasser auf der Mäanderskala gewonnen werden. Der dritte Teil der Arbeit beschreibt die Vorgehensweise für die Bewertung des Grundwasserkontaminationsrisikos im Einzugsgebiet des Songhua Flusses in China. Eine umfassende Literaturstudie wurde durchgeführt, um einen Überblick über die Verfügbarkeit von Messdaten zur Belastung der Wasserressourcen Chinas mit organischen Schadstoffen zu erhalten. Danach wurde für ein Teileinzugsgebiet ein dreidimensionales numerisches Grundwassermodell auf Basis der vorhandenen hydrogeologischen Daten aufgebaut. Dieses wurde dazu verwendet die Änderungen im Stofftransports und den Schadstoffkonzentrationen innerhalb des Aquifersystems unter steigenden Entnahmeraten zu analysieren. Basierend auf diesen Studien wurden auf der Skale des Gesamteinzugsgebiets, um die beschränkte Verfügbarkeit von Felddaten auszugleichen, die Ergebnisse der numerischen Grundwassermodellierung mit Fernerkundungsdaten und Webdatenbanken in einem Indexsystem kombiniert mit dem für die oberflächennahen Aquifere Vulnerabilität, Gefährdungspotential und Verschmutzungsrisiko in einer räumlichen Auflösung von 1 km² bestimmt wurden. Zusammenfassend konnten durch die vorliegende Doktorarbeit neue passgenaue Methoden zur effektiven Kombination von in-situ Messungen, der Datenerhebung und Datenintegration aus vielfältigen Datenquellen sowie numerischen Grundwassermodellierungsstrategien entwickelt und zur Lösung der untersuchten hydrologischer Fragestellen auf den verschiedenen Skalen und über die Grenzen der einzelnen hydrologischen Teilsysteme hinaus erfolgreich angewandt werden.

Page generated in 0.0349 seconds