• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 15
  • 14
  • 9
  • 9
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effect of surface roughness on Nuclear Magnetic Resonance relaxation

Nordin, Matias, Knight, Rosemary 25 November 2016 (has links) (PDF)
Most theoretical treatments of Nuclear Magnetic Resonance (NMR) measurements of porous media assume ideal pore geometries for the pores (i.e. slabs, spheres or cylinders) with welldefined surface-to-volume ratios (S/V). This same assumption is commonly adopted for naturally occurring materials, where the pore geometry can differ substantially from these ideal shapes. In this paper the effect of the roughness of the pore surface on the T2 relaxation spectrum is studied. By homogenization of the problem using an electrostatic approach it is found that the effective surface relaxivity can increase dramatically in the presence of rough surfaces. This leads to a situation where the system responds as a pore with a smooth surface, but with significantly increased surface relaxivity. As a result the standard approach of assuming an idealized geometry with known surface to-volume and inverting the T2 relaxation spectrum to a pore size distribution is no longer valid. The effective relaxivity is found to be fairly insensitive to the shape of the roughness but strongly dependent on the width and depth of the surface geometry.
2

Elasticity and Morphology of Wet Fiber Networks / Elastizität und Morphologie Feuchter Fasernetzwerke

Claussen, Jann Ohle 24 November 2011 (has links)
No description available.
3

Water Quality Simulation with Particle Tracking Method

Sun, Yuanyuan 18 December 2013 (has links) (PDF)
In the numerical simulation of fluid flow and solute transport in porous media, finite element method (FEM) has long been utilized and has been proven to be efficient. In this work, an alternative approach called random walk particle tracking (RWPT) method is proposed. In this method, a finite number of particles represent the distribution of a solute mass. Each particle carries a certain fraction of the total mass and moves in the porous media according to the velocity field. The proposed RWPT model is established on a scientific software platform OpenGeoSys (OGS), which is an open source initiative for numerical simulation of thermo-hydro-mechanical-chemical (THMC) processes in porous media. The flow equation is solved using finite element method in OGS. The obtained hydraulic heads are numerically differentiated to obtain the velocity field. The particle tracking method does not solve the transport equation directly but deals with it in a physically stochastic manner by using the velocity field. Parallel computing concept is included in the model implementation to promote computational efficiency. Several benchmarks are developed for the particle tracking method in OGS to simulate solute transport in porous media and pore space. The simulation results are compared to analytical solutions and other numerical methods to test the presented method. The particle tracking method can accommodate Darcy flow as it is the main consideration in groundwater flow. Furthermore, other flow processes such as Forchheimer flow or Richards flow can be combined with as well. Two applications indicate the capability of the method to handle theoretical real-world problems. This method can be applied as a tool to elicit and discern the detailed structure of evolving contaminant plumes. / Bei der numerischen Simulation von Strömung und Stofftransport in porösen Medien hat die Nutzung der Finite-Elemente-Methode (FEM) eine lange Tradition und wird sich als effizient erweisen. In dieser Arbeit wird ein alternativer Ansatz, die random walk particle tracking (RWPT) Methode vorgeschlagen. Bei diesem Verfahren stellt eine endliche Anzahl von Partikeln die Verteilung eines gelösten Stoffes dar. Jedes Teilchen trägt einen bestimmten Bruchteil der Gesamtmasse und bewegt sich in den porösen Medien gemäß des Geschwindigkeitsfeldes. Das vorgeschlagene RWPT Modell basiert auf der wissenschaftlichen Softwareplattform OpenGeoSys (OGS), die eine Open-Source-Initiative für die numerische Simulation thermo-hydro-mechanisch-chemischen (THMC) in porösen Medien darstellt. Die Strömungsgleichung wird in OGS mit der Finite-Elemente-Methode gelöst. Der Grundwasserstand wird numerisch berechnet, um das Geschwindigkeitsfeld zu erhalten. Die Partikel-Tracking-Methode löst die Transportgleichung nicht direkt, sondern befasst sich mit ihr in einer physikalisch stochastische Weise unter Nutzung des Geschwindigkeitsfeldes. Zur Berücksichtigung der Recheneffizienz ist ein Parallel Computing-Konzept in der Modell-Implementierung enthalten. Zur Simulation des Stofftransports in porösen Medien und im Porenraum wurden mehrere Benchmarks für die Partikel-Tracking-Methode in OGS entwickelt. Die Simulationsergebnisse werden mit analytischen Lösungen und andere numerische Methoden verglichen, um die Aussagefähigkeit des vorgestellten Verfahrens zu bestätigen. Mit der Partikel-Tracking-Methode kann die Darcy-Strömung gelöst werden, die das wichtigste Kriterium in der Grundwasserströmung ist. Außerdem bewältigt die Methode auch andere Strömungsprozesse, wie die Forchheimer-Strömung und die Richards-Strömung. Zwei Anwendungen zeigen die Leistungsfähigkeit der Methode bei der prinzipiellen Handhabung von Problemen der realen Welt. Die Methode kann als ein Instrument zur Aufdeckung Erkennung der detaillierte Struktur von sich entwickelnden Schadstofffahnenangewendet werden.
4

The effect of surface roughness on Nuclear Magnetic Resonance relaxation

Nordin, Matias, Knight, Rosemary January 2016 (has links)
Most theoretical treatments of Nuclear Magnetic Resonance (NMR) measurements of porous media assume ideal pore geometries for the pores (i.e. slabs, spheres or cylinders) with welldefined surface-to-volume ratios (S/V). This same assumption is commonly adopted for naturally occurring materials, where the pore geometry can differ substantially from these ideal shapes. In this paper the effect of the roughness of the pore surface on the T2 relaxation spectrum is studied. By homogenization of the problem using an electrostatic approach it is found that the effective surface relaxivity can increase dramatically in the presence of rough surfaces. This leads to a situation where the system responds as a pore with a smooth surface, but with significantly increased surface relaxivity. As a result the standard approach of assuming an idealized geometry with known surface to-volume and inverting the T2 relaxation spectrum to a pore size distribution is no longer valid. The effective relaxivity is found to be fairly insensitive to the shape of the roughness but strongly dependent on the width and depth of the surface geometry.
5

Modellierung und Simulation elektroaktiver Polymergele mittels der Theorie Poröser Medien

Leichsenring, Péter 19 January 2019 (has links)
Der moderne Entwicklungsprozess von Bauteilen umfasst nicht nur Aspekte der funktionsgerechten Dimensionierung, sondern berücksichtigt auch Materialien, die auf Umgebungsbedingungen reagieren oder deren Verhalten sich von außen regeln lassen kann. Im Allgemeinen weisen diese Materialien mechanische Eigenschaften auf, die von mindestens einem weiteren physikalischen Feld, das zum Beispiel elektrischer, magnetischer oder chemischer Natur sein kann, aufgrund dem Material eigener innerer Wechselwirkungen beeinflusst werden. In der Literatur wird für diese Klasse von Materialien häufig der Begriff smart materials oder intelligent materials verwendet [Leo07]. Für die Forschung stellten diese Materialien in den letzten Jahren ein außerordentlich spannendes Aufgabenfeld dar, sodass eine Vielzahl von Materialien klassifiziert werden konnte [BC04] und auf Basis ihrer charakteristischen Eigenschaften neuartige Sensor- und Aktorsysteme entstanden sind [GA10]. Ein Beispiel ist das in Abbildung 1.1 dargestellte Modell eines Chemosensors auf Basis eines polyelektrolyten Gels, der am Institut für Festkörperelektronik der TU Dresden entwickelt wurde.
6

Water Quality Simulation with Particle Tracking Method

Sun, Yuanyuan 07 November 2013 (has links)
In the numerical simulation of fluid flow and solute transport in porous media, finite element method (FEM) has long been utilized and has been proven to be efficient. In this work, an alternative approach called random walk particle tracking (RWPT) method is proposed. In this method, a finite number of particles represent the distribution of a solute mass. Each particle carries a certain fraction of the total mass and moves in the porous media according to the velocity field. The proposed RWPT model is established on a scientific software platform OpenGeoSys (OGS), which is an open source initiative for numerical simulation of thermo-hydro-mechanical-chemical (THMC) processes in porous media. The flow equation is solved using finite element method in OGS. The obtained hydraulic heads are numerically differentiated to obtain the velocity field. The particle tracking method does not solve the transport equation directly but deals with it in a physically stochastic manner by using the velocity field. Parallel computing concept is included in the model implementation to promote computational efficiency. Several benchmarks are developed for the particle tracking method in OGS to simulate solute transport in porous media and pore space. The simulation results are compared to analytical solutions and other numerical methods to test the presented method. The particle tracking method can accommodate Darcy flow as it is the main consideration in groundwater flow. Furthermore, other flow processes such as Forchheimer flow or Richards flow can be combined with as well. Two applications indicate the capability of the method to handle theoretical real-world problems. This method can be applied as a tool to elicit and discern the detailed structure of evolving contaminant plumes. / Bei der numerischen Simulation von Strömung und Stofftransport in porösen Medien hat die Nutzung der Finite-Elemente-Methode (FEM) eine lange Tradition und wird sich als effizient erweisen. In dieser Arbeit wird ein alternativer Ansatz, die random walk particle tracking (RWPT) Methode vorgeschlagen. Bei diesem Verfahren stellt eine endliche Anzahl von Partikeln die Verteilung eines gelösten Stoffes dar. Jedes Teilchen trägt einen bestimmten Bruchteil der Gesamtmasse und bewegt sich in den porösen Medien gemäß des Geschwindigkeitsfeldes. Das vorgeschlagene RWPT Modell basiert auf der wissenschaftlichen Softwareplattform OpenGeoSys (OGS), die eine Open-Source-Initiative für die numerische Simulation thermo-hydro-mechanisch-chemischen (THMC) in porösen Medien darstellt. Die Strömungsgleichung wird in OGS mit der Finite-Elemente-Methode gelöst. Der Grundwasserstand wird numerisch berechnet, um das Geschwindigkeitsfeld zu erhalten. Die Partikel-Tracking-Methode löst die Transportgleichung nicht direkt, sondern befasst sich mit ihr in einer physikalisch stochastische Weise unter Nutzung des Geschwindigkeitsfeldes. Zur Berücksichtigung der Recheneffizienz ist ein Parallel Computing-Konzept in der Modell-Implementierung enthalten. Zur Simulation des Stofftransports in porösen Medien und im Porenraum wurden mehrere Benchmarks für die Partikel-Tracking-Methode in OGS entwickelt. Die Simulationsergebnisse werden mit analytischen Lösungen und andere numerische Methoden verglichen, um die Aussagefähigkeit des vorgestellten Verfahrens zu bestätigen. Mit der Partikel-Tracking-Methode kann die Darcy-Strömung gelöst werden, die das wichtigste Kriterium in der Grundwasserströmung ist. Außerdem bewältigt die Methode auch andere Strömungsprozesse, wie die Forchheimer-Strömung und die Richards-Strömung. Zwei Anwendungen zeigen die Leistungsfähigkeit der Methode bei der prinzipiellen Handhabung von Problemen der realen Welt. Die Methode kann als ein Instrument zur Aufdeckung Erkennung der detaillierte Struktur von sich entwickelnden Schadstofffahnenangewendet werden.
7

Time-dependent chemo-electromechanical behavior of hydrogelbased structures

Leichsenring, Peter, Wallmersperger, Thomas 13 August 2020 (has links)
Charged hydrogels are ionic polymer gels and belong to the class of smart materials. These gels are multiphasic materials which consist of a solid phase, a fluid phase and an ionic phase. Due to the presence of bound charges these materials are stimuli-responsive to electrical or chemical loads. The application of electrical or chemical stimuli as well as mechanical loads lead to a viscoelastic response. On the macroscopic scale, the response is governed by a local reversible release or absorption of water which, in turn, leads to a local decrease or increase of mass and a respective volume change. Furthermore, the chemo-electro-mechanical equilibrium of a hydrogel depends on the chemical composition of the gel and the surrounding solution bath. Due to the presence of bound charges in the hydrogel, this system can be understood as an osmotic cell where differences in the concentration of mobile ions in the gel and solution domain lead to an osmotic pressure difference. In the present work, a continuum-based numerical model is presented in order to describe the time-dependent swelling behavior of hydrogels. The numerical model is based on the Theory of Porous Media and captures the fluid-solid, fluid-ion and ion-ion interactions. As a direct consequence of the chemo-electro-mechanical equilibrium, the corresponding boundary conditions are defined following the equilibrium conditions. For the interaction of the hydrogel with surrounding mechanical structures, also respective jump condtions are formulated. Finaly, numerical results of the time-dependent behavior of a hydrogel-based chemo-sensor will be presented.
8

Modeling and simulation of transport phenomena in ionic gels

Leichsenring, Peter, Wallmersperger, Thomas 29 August 2019 (has links)
Ionic hydrogels belong to the class of polyelectrolyte gels or ionic gels. Their ability to swell or shrink under different environmental conditions such as change of pH, ion concentration or temperature make them promising materials, e.g. for microsensoric or microactuatoric devices. The hydrogel swelling exhibits nonlinear effects due to the occurrence of different interacting transport phenomena. Numerical simulations are an essential part in the ongoing development of microsensors and microactuators. In order to determine transport effects due to diffusion, migration and convection a multiphase mesoscale model based on the Theory of Porous Media is applied. The governing field equations are solved in the transient regime by applying the Finite Element Method. By means of the derived numerical framework a detailed investigation of the different transport phenomena is carried out. Numerical experiments are performed to characterize the dominating transfer phenomena for ionic gels under chemical stimulation.
9

Forced convective heat transfer through open cell foams

Vijay, Dig 15 June 2017 (has links) (PDF)
The purpose of this study is to investigate forced convection of air through open cell foams. It can be numerically investigated either by implementing the time efficient macroscopic models or computationally expensive microscopic models. However, during the course of this study, it was observed that the macroscopic models are not sufficient for determining the desired key parameters. Nevertheless, it is still possible that these macroscopic models can be used to design an application accurately with minimum time efforts if the concerned key parameters are already known through other means. Accordingly, in this work, a methodology is developed to determine the desired key parameters by implementing the microscopic models, which are further used into the macroscopic models for designing different applications. To validate the proposed methodology, a set of steady state and transient forced convection experiments were performed for a set of ceramic foams having different pore diameter (10−30 PPI) and porosity (0.79−0.87) for a superficial velocity in the range of 0.5−10 m/s.
10

Validation of hygrothermal material modelling under consideration of the hysteresis of moisture storage / Validierung hygrothermischer Materialmodellierung unter Berücksichtigung der Hysterese der Feuchtespeicherung

Scheffler, Gregor 09 April 2008 (has links) (PDF)
The achievable accuracy of hygrothermal building component simulation is significantly dependent on the applied material functions. These functions are determined by the material modelling marking the connection between the basic storage and transport parameters which are obtained from basic measurements, and the storage and transport coefficients which are defined within the balance and flow equations. It is the aim of the present study to develop a flexible and widely applicable material model which is not restricted to the current level of the transport theory. Furthermore, limits and options of this model are to be validated by means of four building materials on the basis of special transient moisture profile measurements. The study’s starting point is a comprehensive investigation of both, the different existing modelling approaches and the available experimental methods to determine basic hygrothermal material parameters. On this basis, the material modelling is set into the context of the heat and moisture transport theory derived from thermodynamics. The involved limits and restrictions are highlighted and options as well as requirements for further developments are pointed out. The developments this study focuses on comprise three fields: experiments for basic property determination, material modelling, and experiments for material model validation. The set of basic material investigation methods has been extended by the drying experiment under defined conditions. The different influences on the drying as well as its application to hygrothermal material model calibration are pointed out and appraised. On this basis, a drying apparatus is designed, built and applied. Ultimately, standardisation criteria and the derivation of a single-value drying coefficient are evaluated. Appropriate extensions are indicated. Based on the bundle of tubes approach, an own material model is developed. It is coupled with a mechanistical approach accounting for serial and parallel structured moisture transport phenomena. The derived liquid water conductivity is adjusted by the help of measured conductivity data close to saturation as well as within the hygroscopic moisture range. Subsequently, two internal modelling parameters are calibrated which is done by numerical simulation of the water uptake and the drying experiment under consideration of the hysteresis of moisture storage. Facilitating its application to the obtained laboratory data, the material model has been implemented into a computer program. It is applied to the four building materials brick, lime-sand brick, aerated concrete and calcium silicate. The adjusted material functions are shown and discussed. In all four cases, the calibration provides an excellent agreement between measured and calculated material behaviour. As experimental basis of the material model validation, the instantaneous profile measurement technique (IPM) has been extended to be applied in Building Physics. Special equipment is developed and measurement procedures are designed. Different models to derive the water content from dielectric data obtained by Time Domain Reflectometry (TDR) measurements are evaluated and implemented. Ultimately, an extensive program of transient moisture profile measurements within the hygroscopic and the overhygroscopic moisture content range is conducted and evaluated. Within the frame of validation, the developments on the experimental as well as on the modelling fields are combined. The IPM experiments are recalculated on the basis of the measured initial and boundary conditions applying the adjusted and calibrated material functions. The comparison of measured and calculated data reveals the power of the developed material modelling just as the consequences of the simplifications made on the transport theory level. The distinct influences of the hysteresis of moisture storage consisting of effects depending on the process history and effects depending on the process dynamics, are proven. By the presented study, the material modelling has been decisively further developed, the set of basic measurement methods has been extended by a substantial experiment and the instantaneous profile measurement technique has been made applicable to Building Physics. Moreover, the influences of the process history and the process dynamics on the moisture transport and the resulting moisture profiles could be shown and proven. By that, not only a material model is now available which perfectly applies to the requirements of flexibility, applicability and extendability. The obtained data provides also a powerful basis for further research and development. / Die Genauigkeit hygrothermischer Bauteilsimulation hängt maßgeblich von den verwendeten Materialfunktionen ab. Sie werden durch die Materialmodellierung bestimmt, welche die Verbindung zwischen den aus Basisexperimenten gewonnenen Speicher- und Transportparametern sowie den innerhalb der Bilanz- und Flussgleichungen definierten Speicher- und Transportkoeffizienten herstellt. Ziel der vorliegenden Arbeit ist zum einen die Entwicklung eines flexiblen, breit anwendbaren und gleichzeitig nicht auf den gegenwärtigen Stand der Transporttheorie beschränkten Materialmodells. Dessen Grenzen und Möglichkeiten sollen zum anderen auf der Grundlage spezieller instationärer Feuchteprofilmessungen anhand von vier Baustoffen untersucht und aufgezeigt werden. Ausgangspunkt der Arbeit ist eine ausführliche Beleuchtung sowohl der vorhandenen Modellansätze als auch der zur Verfügung stehenden experimentellen Methoden zur Bestimmung hygrothermischer Basisparameter. Auf dieser Grundlage wird die Materialmodellierung in den Kontext der aus der Thermodynamik abgeleiteten Wärmeund Feuchtetransporttheorie eingeordnet. Die damit verbundenen Grenzen und Einschränkungen werden hervorgehoben und Entwicklungsmöglichkeiten sowie weiterer Entwicklungsbedarf aufgezeigt. Dieser umfasst drei Bereiche: die Experimente zur Bestimmung von Basisparametern, die Materialmodellierung, sowie Experimente zur Modellvalidierung. Die Reihe der Basisexperimente wird um den Trocknungsversuch unter definierten Bedingungen erweitert. Die verschiedenen Einflüsse auf die Trocknung und deren Anwendung in der Kalibrierung hygrothermischer Materialmodellierung werden herausgestellt und bewertet. Darauf aufbauend wird eine Apparatur entworfen, gebaut und angewendet. Schließlich werden Kriterien zur Standardisierung und Ableitung eines Einzahlenkennwertes evaluiert. Sinnvolle Erweiterungen werden aufgezeigt. Es wird ein eigenes Materialmodell auf der Grundlage eines Porenbündelansatzes hergeleitet, welches mit einem mechanistischen Ansatz gekoppelt wird, der den Feuchtetransport in seriell und parallel strukturierte Bereiche untergliedert. Die abgeleitete Flüssigwasserleitfähigkeit wird anhand von Leitfähigkeitsmessdaten im nahe gesättigten sowie im hygroskopischen Feuchtebereich justiert. Zwei interne Modellparameter werden anschließend unter Berücksichtigung der Hysterese der Feuchtespeicherung anhand des Aufsaug- und des Trocknungsversuches kalibriert. Das Materialmodell ist zur Erleichterung der Anwendung in ein Computerprogramm zur Anpassung an die Labordaten implementiert worden. Das Programm wird auf die vier Baustoffe Ziegel, Kalksandstein, Porenbeton und Calciumsilikat angewendet. Die entsprechend angepassten Materialfunktionen werden gezeigt und diskutiert. Im Rahmen der Kalibrierung wird eine hervorragende Übereinstimmung zwischen gemessenem und berechnetem Materialverhalten erreicht. Zur Modellvalidierung wird die Augenblicksprofilmethode (IPM) für die bauphysikalische Anwendung erweitert. Spezielle Apparaturen werden entwickelt und Versuchsabläufe entworfen. Modelle zur Ableitung des Wassergehaltes aus mit Hilfe der Time Domain Reflectometry (TDR) gewonnenen Dielektrizitätsmessdaten werden evaluiert und implementiert. Schließlich wird ein umfangreiches Programm an Feuchteprofilmessungen im hygroskopischen und überhygroskopischen Feuchtebereich umgesetzt und ausgewertet. Im Rahmen der Validierung werden die Entwicklungen auf experimenteller sowie auf Modellierungsebene zusammengeführt. Die IPM Experimente werden anhand der gemessenen Anfangs- und Randbedingungen und auf der Grundlage der angepassten und kalibrierten Materialfunktionen nachgerechnet. Der Vergleich zwischen Messung und Rechnung offenbart die Stärke der entwickelten Materialmodellierung ebenso, wie den Einfluss der auf Ebene der Transporttheorie getroffenen Vereinfachungen. Ein deutlicher Einfluss der sich aus der Prozessgeschichte sowie der Prozessdynamik zusammensetzenden Hysterese der Feuchtespeicherung kann nachgewiesen werden. Mit der vorliegenden Arbeit ist somit nicht nur die Materialmodellierung entscheidend weiterentwickelt, die Reihe der einfachen Basisexperimente um einen wesentlichen Versuch erweitert und die Augenblicksprofilmethode für bauphysikalische Belange anwendbar gemacht worden, es wurden auch die Einflüsse der Prozessgeschichte, und erstmals auch der Prozessdynamik, auf den Feuchtetransport sowie die sich einstellenden Feuchteprofile deutlich aufgezeigt und nachgewiesen. Es ist demnach nicht nur ein Materialmodell, welches den gestellten Anforderungen an Flexibilität, breite Anwendbarkeit und Erweiterbarkeit genügt, entwickelt worden, es wird mit den gewonnenen Messdaten auch die Grundlage weiterer Forschung zur Verfügung gestellt.

Page generated in 0.0514 seconds