• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 12
  • 7
  • Tagged with
  • 32
  • 26
  • 15
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Funktionelle kardiale Magnet-Resonanz-Tomographie: Einfluss der alternativen Wahl des Narkosemittels Isofluran, Propofol sowie Propofol in Kombination mit Pancuronium auf die kardialen Funktionsparameter im Rattenmodell

Hubert, Alexander Thomas Wilhelm January 2012 (has links) (PDF)
Die Magnetresonanztomographie stellt den Goldstandard zur kardialen Funktionsdiagnostik dar und ermöglicht die nicht-invasive Analyse der Herzfunktion mit valider Bestimmung von Volumina, Flüssen sowie der Ejektionsfraktion in vivo. In unserer Arbeitsgruppe erfolgt eine stetige Weiterentwicklung der Methode am Rattenmodell, wobei regelhaft eine Narkose des Versuchtstiers notwendig ist. Im Rahmen meiner Arbeit wurde der Effekt verschiedener Narkoseformen auf die Herzfunktion untersucht. Dabei wurde eine Isoflurannarkose einer Narkose mittels Propofol sowie Propofol in Kombination mit Pancuronium gegenübergestellt. Hierbei zeigen sich teilweise deutliche Unterschiede in den kardialen Funktionsparametern während der Untersuchung. Hieraus ist zu folgern, dass ein sinnvoller Vergleich der Herzfunktion von Versuchsreihen mit unterschiedlicher Narkosetechnik problematisch ist. Dies unterstreicht die Wichtigkeit einer Festlegung der Narkosetechnik vor Beginn einer Versuchsreihe in der kardiovaskulären Forschung und deren Konstanthaltung über die gesamte Versuchsdauer. / Cardiac magnetic resonance imaging (MRI) is considered the current gold standard for in vivo-analysis of cardiac structure and function. Our workgroup is concentrating on developing cardiac MRI techniques in small animal models, which generally requires anaesthesia of the animal. In the current study, the effects of the narcotics Isoflurane vs. Propofol vs. Propofol in combination with Pancuronium on functional cardiac parameters measured by cardiac MRI were analyzed. The results reveal major differences of the acquired functional cardiac parameters in animals anaesthetized with Isoflurane, Propofol, or Propofol in combination with Pancuronium, respectively. This highlights the importance of establishing a specific anaesthesia technique and keeping it unchanged during an entire MRI study.
2

The BOLD Signal is more than a Brain Activation Index / Das BOLD Signal ist mehr als ein Maß für Hirnaktivierung

Akhrif, Atae January 2023 (has links) (PDF)
In the recent years, translational studies comparing imaging data of animals and humans have gained increasing scientific interests with crucial findings stemming from both, human and animal work. In order to harmonize statistical analyses of data from different species and to optimize the transfer of knowledge between them, shared data acquisition protocols and combined statistical approaches have to be identified. Following this idea, methods of data analysis, which have until now mainly been used to model neural responses of electrophysiological recordings from rodent data, were applied on human hemodynamic responses (i.e. Blood-Oxygen-Level- Dependent BOLD signal) as measured via functional magnetic resonance imaging (fMRI). At the example of two attention and impulsivity networks, timing dynamics and amplitude of the fMRI signal were determined (study 1). Study 2 described the same parameters frequency-specifically, and in study 3, the complexity of neural processing was quantified in terms of fractality. Determined parameters were compared with regard to the subjects’ task performance / impulsivity to validate findings with regard to reports of the current scientific debate. In a general discussion, overlapping as well as additional information of methodological approaches were discussed with regard to its potential for biomarkers in the context of neuropsychiatric disorders. / In den letzten Jahren haben translationale Studien, in denen Befunde von Tieren und Menschen direkt verglichen werden, zunehmend an wissenschaftlichem Interesse gewonnen. Um statistische Analysen von Daten verschiedener Spezies zu harmonisieren und somit den Wissenstransfer zu optimieren, müssen gemeinsame Datenerfassungsprotokolle sowie kombinierte statistische Ansätze identifiziert werden. Diesem Gedanken folgend werden in dieser Arbeit Methoden der Datenanalyse, die bisher hauptsächlich zur Modellierung neuronaler Antworten aus elektrophysiologischer Aufzeichnungen bei Nagetierdaten verwendet wurden, auf hämodynamische Antworten (d.h. Blood-Oxygen-Level-Dependent BOLD-Signal), welche mittels funktionaler Magnetresonanztomo-graphie (fMRT) gemessen werden, im Menschen angewendet. Am Beispiel zweier Aufmerksamkeits- und Impulsivitätsnetzwerke wurden der zeitliche Verlauf und Amplitude des fMRI-Signals bestimmt (Studie 1). In Studie 2 wurden die gleichen Parameter frequenzspezifisch ausgewertet, und in Studie 3 wurde die Komplexität neuronaler Verarbeitung anhand von Fraktalität quantifiziert. Die ermittelten Parameter wurden hinsichtlich der Task Performance / Impulsivität der Probanden verglichen, um die Ergebnisse im Kontext von Befunden aus der aktuellen wissenschaftlichen Debatte zu validieren. In einer allgemeinen Diskussion wurden sowohl überlappende als auch zusätzliche Informationen zu methodischen Ansätzen hinsichtlich ihres Potenzials für Biomarker im Zusammenhang mit neuropsychiatrischen Erkrankungen diskutiert.
3

The BOLD Signal is more than a Brain Activation Index / Das BOLD Signal ist mehr als ein Maß für Hirnaktivierung

Akhrif, Atae January 2020 (has links)
In the recent years, translational studies comparing imaging data of animals and humans have gained increasing scientific interests with crucial findings stemming from both, human and animal work. In order to harmonize statistical analyses of data from different species and to optimize the transfer of knowledge between them, shared data acquisition protocols and combined statistical approaches have to be identified. Following this idea, methods of data analysis, which have until now mainly been used to model neural responses of electrophysiological recordings from rodent data, were applied on human hemodynamic responses (i.e. Blood-Oxygen-Level-Dependent BOLD signal) as measured via functional magnetic resonance imaging (fMRI). At the example of two attention and impulsivity networks, timing dynamics and amplitude of the fMRI signal were determined (study 1). Study 2 described the same parameters frequency-specifically, and in study 3, the complexity of neural processing was quantified in terms of fractality. Determined parameters were compared with regard to the subjects’ task performance / impulsivity to validate findings with regard to reports of the current scientific debate. In a general discussion, overlapping as well as additional information of methodological approaches were discussed with regard to its potential for biomarkers in the context of neuropsychiatric disorders. / In den letzten Jahren haben translationale Studien, in denen Befunde von Tieren und Menschen direkt verglichen werden, zunehmend an wissenschaftlichem Interesse gewonnen. Um statistische Analysen von Daten verschiedener Spezies zu harmonisieren und somit den Wissenstransfer zu optimieren, müssen gemeinsame Datenerfassungsprotokolle sowie kombinierte statistische Ansätze identifiziert werden. Diesem Gedanken folgend werden in dieser Arbeit Methoden der Datenanalyse, die bisher hauptsächlich zur Modellierung neuronaler Antworten aus elektrophysiologischer Aufzeichnungen bei Nagetierdaten verwendet wurden, auf hämodynamische Antworten (d.h. Blood-Oxygen-Level-Dependent BOLD-Signal), welche mittels funktionaler Magnetresonanztomo-graphie (fMRT) gemessen werden, im Menschen angewendet. Am Beispiel zweier Aufmerksamkeits- und Impulsivitätsnetzwerke wurden der zeitliche Verlauf und Amplitude des fMRI-Signals bestimmt (Studie 1). In Studie 2 wurden die gleichen Parameter frequenzspezifisch ausgewertet, und in Studie 3 wurde die Komplexität neuronaler Verarbeitung anhand von Fraktalität quantifiziert. Die ermittelten Parameter wurden hinsichtlich der Task Performance / Impulsivität der Probanden verglichen, um die Ergebnisse im Kontext von Befunden aus der aktuellen wissenschaftlichen Debatte zu validieren. In einer allgemeinen Diskussion wurden sowohl überlappende als auch zusätzliche Informationen zu methodischen Ansätzen hinsichtlich ihres Potenzials für Biomarker im Zusammenhang mit neuropsychiatrischen Erkrankungen diskutiert.
4

Beschleunigte Magnetresonanz-Relaxographie / Accelerated Magnetic Resonance Relaxography

Pfister, Julian January 2019 (has links) (PDF)
Ziel dieser Arbeit ist es, die quantitative MRT in den Fokus zu rücken. In den letzten Jahren hat sich auf diesem Forschungsgebiet viel weiterentwickelt und es wurden verschiedenste Sequenzen und Methoden vorgestellt, um insbesondere Relaxationszeitparameter quantitativ in kurzer Zeit zu messen. Steady-State-Sequenzen eignen sich besonders für diese Thematik, da sie kurze Messzeiten benötigen und darüber hinaus ein relativ hohes SNR besitzen. Speziell die IR TrueFISP-Sequenz bietet für die Parameterquantifizierung viel Potential. Ursprünglich wurde diese Sequenz an der Universität Würzburg zur simultanen Messung von T1- und T2-Relaxationszeiten vorgestellt und hinsichtlich der Zeiteffizienz weiterentwickelt. In dieser Arbeit wurde ein neuartiger iterativer Rekonstruktionsansatz für die IR TrueFISP-Sequenz entwickelt, der auf einer Hauptkomponentenanalyse (PCA) basiert und sich die glatten Signalverläufe zu Nutze macht. Aufgrund der hohen Zeitauflösung dieser Rekonstruktionstechnik werden dabei auch Gewebekomponenten mit kurzen Relaxationszeiten detektierbar. Weiterhin bewahrt der Rekonstruktionsansatz Informationen mehrerer Gewebekomponenten innerhalb eines Voxels und ermöglicht damit eine relaxographische Untersuchung. Insbesondere beim Menschen führen der Partialvolumeneffekt und die Mikrostruktur des Gewebes zu Signalverläufen, die ein multi-exponentielles Signal liefern. Die MR-Relaxographie, also die Darstellung von Relaxationszeitverteilungen innerhalb eines Voxels, stellt eine Möglichkeit dar, um die beteiligten Gewebekomponenten aus dem überlagerten Signalverlauf zu extrahieren. Insgesamt bilden die optimierte Relaxometrie mit der Möglichkeit der analytischen Korrektur von Magnetfeldinhomogenitäten und die beschleunigte Relaxographie die Hauptteile dieser Dissertation. Die Hauptkapitel werden im Folgenden noch einmal gesondert zusammengefasst. Die simultane Aufnahme der quantitativen T1- und T2-Parameter-Karten kann mit einem Goldenen-Winkel-basiertem radialen IR TrueFISP-Readout in ungefähr 7 Sekunden pro Schicht erreicht werden. Die bisherige Rekonstruktionstechnik mit dem KWIC-Filter ist durch dessen breite Filter-Bandbreite und somit in der zeitlichen Auflösung limitiert. Besonders bei hohen räumlichen Frequenzen wird eine sehr große Anzahl an Projektionen zusammengefasst um ein Bild zu generieren. Dies sorgt dafür, dass Gewebekomponenten mit kurzer T1*-Relaxationszeit (z.B. Fett oder Myelin) nicht akkurat aufgelöst werden können. Um dieses Problem zu umgehen, wurde die T1* shuffling-Rekonstruktion entwickelt, die auf dem T2 Shuffling-Ansatz basiert. Diese Rekonstruktionstechnik macht sich die glatten Signalverläufe der IR TrueFISP-Sequenz zu Nutze und ermöglicht die Anwendung einer PCA. Die iterative Rekonstruktion sorgt dafür, dass mit nur acht kombinierten Projektionen pro generiertem Bild eine merklich verbesserte temporäre Auflösung erzielt werden kann. Ein Nachteil ist jedoch das stärkere Rauschen in den ersten Bildern der Zeitserie bedingt durch die angewandte PCA. Dieses verstärkte Rauschen äußert sich in den leicht erhöhten Standardabweichungen in den berechneten Parameter-Karten. Jedoch ist der Mittelwert näher an den Referenzwerten im Vergleich zu den Ergebnissen mit dem KWIC-Filter. Letztendlich kann man sagen, dass die Ergebnisse leicht verrauschter, aber exakter sind. Mittels zusätzlichen Regularisierungstechniken oder Vorwissen bezüglich des Rauschlevels wäre es zudem noch möglich, das SNR der ersten Bilder zu verbessern, um dadurch den beschriebenen Effekt zu verringern. Grundsätzlich hängt die Genauigkeit von IR TrueFISP vom T1/T2-Verhältnis des betreffenden Gewebes und dem gewählten Flipwinkel ab. In dieser Arbeit wurde der Flipwinkel besonders für weiße und graue Masse im menschlichen Gehirn optimiert. Mit den verwendeten 35° wurde er außerdem etwas kleiner gewählt, um zudem Magnetisierungstransfereffekte zu minimieren. Mit diesen Einstellungen ist die Präzision vor allem für hohe T1- und niedrige T2-Werte sehr gut, wird jedoch insbesondere für höhere T2-Werte schlechter. Dies ist aber ein generelles Problem der IR TrueFISP-Sequenz und hängt nicht mit der entwickelten Rekonstruktionsmethode zusammen. Außerdem wurde im fünften Kapitel eine Akquisitionstechnik vorgestellt, die eine 3D-Abdeckung der quantitativen Messungen des Gehirns in klinisch akzeptabler Zeit von unter 10 Minuten erzielt. Dies wird durch Einsatz der parallelen Bildgebung erreicht, da eine Kombination aus radialer Abtastung in der Schicht und kartesischer Aufnahme in Schichtrichtung (Stack-of-Stars) vorliegt. Ein großes Problem in der Steady-State-Sequenz (und somit auch bei IR TrueFISP) sind Magnetfeldinhomogenitäten, die durch Suszeptibilitätsunterschiede verschiedener Gewebe und/oder Inhomogenitäten des Hauptmagnetfeldes hervorgerufen werden. Diese führen zu Signalauslöschungen und damit verbunden zu den beschriebenen Banding-Artefakten. Mithilfe der analytisch ermittelten Korrekturformeln ist es nun möglich, die berechneten (T1,T2)-Wertepaare unter Berücksichtigung der tatsächlich auftretenden Off- Resonanzfrequenz für einen großen Bereich zu korrigieren. An den kritischen Stellen, an denen die Bandings auftreten, liefert jedoch auch diese Korrektur keine brauchbaren Ergebnisse. Grundsätzlich ist es für die Genauigkeit der Ergebnisse stets zu empfehlen, die Flipwinkel- und B0-Karte zusätzlich mit aufzunehmen, um diese Parameter für die quantitative Auswertung exakt zu kennen. Mit den beschriebenen Methoden aus Kapitel 6 könnte es prinzipiell auch möglich sein, die Off-Resonanzfrequenz aus dem Signalverlauf zu ermitteln und auf die zusätzliche Messung der B0-Karte zu verzichten. B0-Änderungen während der Messung, die von der Erwärmung der passiven Shim-Elemente im MR-System hervorgerufen werden, sind kaum zu korrigieren. Ein stabiler Scanner ohne B0-Drift ist deshalb für quantitative Auswertungen erforderlich. Die erwähnte Messzeit von 7 Sekunden pro Schicht garantiert, dass auch Gewebe mit längeren Relaxationskomponenten annähernd im Steady-State sind, was wiederum für das Umkehren des Signals in den abklingenden Verlauf gegen Null und die anschließende Multikomponentenanalyse (vgl. Kapitel 7) notwendig ist. Mit der inversen Laplace- Transformation ist es innerhalb eines Voxels möglich, Signalverläufe auf mehrere Komponenten hin zu untersuchen. Der ursprünglich angenommene mono-exponentielle Verlauf wird durch ein multi-exponentielles Verhalten abgelöst, was vor allem in biologischem Gewebe eher der Wahrheit entspricht. Gewebe mit kurzen Relaxationskomponenten (T1* < 200 ms) sind klinisch relevant und mit T1* shuffling detektierbar. Vor allem Myelin innerhalb des Gehirns ist bei neurologischen Fragestellungen ein Indikator zur Diagnose im Frühstadium (z.B. für neurodegenerative Erkrankungen) und deshalb von besonderem Interesse. Die Integration über verschiedene T1*-Zeitbereiche im T1*-Spektrum ermöglicht dazu die Erstellung von Gewebekomponenten-Karten, mithilfe derer klinische Auswertungen sinnvoll wären. Die Erstellung dieser Karten ist prinzipiell möglich und funktioniert für mittlere und lange Gewebekomponenten recht gut. Die klinisch relevanten kurzen Gewebekomponenten sind dagegen bei der radialen Aufnahme mit nur einem Schuss noch nicht befriedigend. Deshalb wurde die Aufnahmetechnik in eine quasi-zufällige kartesische Akquisition mit mehreren Schüssen weiterentwickelt. Die Ergebnisse wurden in Kapitel 7 vorgestellt und sind vielversprechend. Einzig die Messzeit sollte mit zusätzlichen Beschleunigungen noch weiter verkürzt und auf eine kartesische 3D-Akquisition erweitert werden. Die Beschränkung auf T1*-Spektren bei der Multikomponentenanalyse und die Tatsache, dass deren Amplitude von einer Kombination von S0 und Sstst abhängen, führen dazu, dass es nicht ohne Weiteres möglich ist für einen einzelnen Gewebetyp an die T1- und T2-Information zu gelangen. In Kapitel 8 wurde gezeigt, dass dies mit einer zusätzlichen Messung gelingen kann. Das finale Ergebnis dieser Messungen ohne und mit Inversion sind zweidimensionale Spektren, bei der für jede Gewebekomponente innerhalb eines Voxels der T1- und T2-Wert abgelesen werden kann. Wichtig hierbei ist die Tatsache, dass der verwendete Ansatz kein Vorwissen über die Anzahl der zu erwartenden Gewebekomponenten (Peaks) im Voxel voraussetzt. Auch bei dieser Methodik ist die Kenntnis über den tatsächlichen Flipwinkel von Bedeutung, da dieser in den Formeln zur Berechnung von T1 und T2 verwendet wird. Die Stabilität des B0-Feldes ist hier ebenso von enormer Bedeutung, da Änderungen zwischen den beiden Messungen zu einem unterschiedlichen Steady-State und somit zu Abweichungen bei den nachfolgenden Berechnungen führen, die auf den selben Steady-State-Wert ausgelegt sind. Zusammenfassend lässt sich sagen, dass mit dieser Arbeit die Grundlagen für genauere und robustere quantitative Messungen mittels Steady-State-Sequenzen gelegt wurden. Es wurde gezeigt, dass sich Relaxationszeitspektren für jedes einzelne Voxel generieren lassen. Dadurch ist eine verbesserte Auswertung möglich, um genauere Aussagen über die Zusammensetzung einer Probe (vor allem beim menschlichen Gewebe) treffen zu können. Zudem wurde die Theorie für ultraschnelle 2D-Relaxographie-Messungen vorgestellt. Erste”Proof of Principle“-Experimente zeigen, dass es möglich ist, 2D-Relaxationszeitspektren in sehr kurzer Zeit zu messen und graphisch darzustellen. Diese Aufnahme- und Datenverarbeitungstechnik ist in dieser Form einmalig und in der Literatur kann bis dato keine schnellere Methode gefunden werden. / The goal of this thesis is to put the quantitative MRI in focus. In recent years, much progress has been made in this area of research and a variety of sequences and methods have been presented, in particular to quantitatively measure relaxation time parameters in a short time. Steady-state sequences are particularly suitable for this topic, since they require short measurement times and, moreover, have a relatively high SNR. Especially the IR TrueFISP sequence offers a lot of potential for parameter quantification. Originally, this sequence was presented at the University of Würzburg for the simultaneous measurement of T1 and T2 relaxation times and further developed in terms of time efficiency. In this work, a novel iterative reconstruction approach has been developed for the IR TrueFISP sequence, which is based on a Principal Component Analysis (PCA) and utilizes the smooth signal courses. Due to the high time resolution of this reconstruction technique also tissue components with short relaxation times are detectable. Furthermore, the reconstruction approach preserves information of several tissue components within a voxel and thus allows for a relaxographic examination. In humans in particular, the partial volume effect and the microstructure of the tissue lead to signal courses that provide a multi-exponential signal. MR relaxography, i.e. the representation of relaxation time distributions within a voxel, offers a possibility to extract the tissue components involved from the superimposed signal course. Overall, the optimized relaxometry with the possibility of analytical correction of magnetic field inhomogeneities and the accelerated relaxography constitute the main parts of this dissertation. The main chapters will be summarized separately below. The simultaneous acquisition of quantitative T1 and T2 parameter maps can be achieved with a golden angle based radial IR TrueFISP readout in approximately 7 seconds per slice. The previous reconstruction technique with the KWIC filter is limited by its broad filter bandwidth and thus in the temporal resolution. Especially at high spatial frequencies, a very large number of projections are combined to generate an image. This ensures that tissue components with a short T1* relaxation time (e.g., fat or myelin) can not be accurately resolved. To circumvent this problem, the T1* shuffling reconstruction was developed based on the T2 Shuffling approach. This reconstruction technique takes advantage of the smooth signal courses of the IR TrueFISP sequence and allows the application of a PCA. The iterative reconstruction ensures that with only eight combined projections per generated image a significantly improved temporary resolution can be achieved. A drawback, however, is the increased noise in the first pictures of the time series due to the applied PCA. This increased noise manifests itself in the slightly increased standard deviations in the calculated parameter maps. However, the mean value is closer to the reference values compared to the results with the KWIC filter. Finally, it can be said that the results are slightly noisier, but more accurate. By means of additional regularization techniques or prior knowledge of the noise level, it would also be possible to improve the SNR of the first images, thereby reducing the described effect. Basically, the accuracy of IR TrueFISP depends on the T1/T2 ratio of the tissue and the selected flip angle. In this work, the flip angle has been optimized for white and gray matter in the human brain. With the 35° used, it was also chosen slightly smaller, in order to minimize magnetization transfer effects. With these settings, the precision is very good, especially for high T1 and low T2 values, but gets worse, especially for higher T2 values. However, this is a general problem of the sequence and is not related to the developed reconstruction method. In addition, the fifth chapter presented an acquisition technique that provides 3D coverage of quantitative brain measurements in a clinically acceptable time of less than 10 minutes. This is achieved through the use of parallel imaging, since there is a combination of radial scanning within one partition and a Cartesian acquisition in the slice direction (stack-of-stars). A major problem in the steady-state sequence (and therefore also in IR TrueFISP) are magnetic field inhomogeneities that are caused by susceptibility differences of various tissues and/or inhomogeneities of the main magnetic field. These lead to signal cancellations and associated with the described banding artifacts. Using the analytically determined correction formulas, it is now possible to correct the calculated (T1,T2) value pairs for a large range taking the actually occurring off-resonance frequency into account. However, even at the critical points where the bandings occur, this correction does not provide useable results. In principle, it is always recommended for the accuracy of the results to additionally acquire the flip angle and B0 map in order to know exactly these parameters for the quantitative evaluation. With the methods described in chapter 6, it could in principle also be possible to determine the off-resonance frequency out of the signal course and to dispense with the additional measurement of the B0 map. B0 changes during the measurement, which are caused by the heating of the passive shim elements in the MR system, are difficult to correct. A stable scanner without B0 drift is therefore required for quantitative evaluations. The mentioned measurement time of 7 seconds per slice guarantees that even tissues with longer relaxation components are approximately in the steady-state, which in turn is necessary for the reversal of the signal towards the exponential decay to zero and the subsequent multi-component analysis (see chapter 7). With the inverse Laplace transformation, it is possible to examine signal courses over several components within a single voxel. The originally assumed mono-exponential signal course is replaced by a multi-exponential behavior, which is more true, especially in biological tissue. Tissues with short relaxation components (T1*< 200 ms) are clinically relevant and detectable by T1* shuffling. In particular, myelin within the brain is an indicator of early diagnosis in neurological problems (e.g., for neurodegenerative diseases) and therefore of particular interest. The integration across different T1* time ranges in the T1* spectrum allows the generation of tissue component maps that would make clinical evaluations useful. The generation of these maps is possible in principle and works quite well for medium and long tissue components. The clinically relevant short tissue components, however, are not yet satisfactory in the radial measurements with a single shot. Therefore, the acquisition technique has evolved into a quasi-random Cartesian multi-shot acquisition. The results were presented in Chapter 7 and are promising. Only the measurement time should be further reduced with additional accelerations and extended to a Cartesian 3D acquisition. The limitation to T1* spectra in multicomponent analysis, and the fact that their amplitude depends on a combination of S0 and Sstst, makes it not readily possible to access the T1 and T2 information for a single tissue type. In chapter 8 it was shown that this can be achieved with an additional measurement. The final result of these measurements, with and without inversion, are two-dimensional spectra in which the T1 and T2 values can be obtained for each tissue component within a voxel. Important here is the fact that the used approach requires no prior knowledge of the number of expected tissue components (peaks) in the voxel. Also in this method, the knowledge about the actual flip angle is important because it is used in the formulas for calculating T1 and T2. The stability of the B0 field is also of enormous importance here, since changes between the two measurements lead to a different steady-state and thus to deviations in the subsequent calculations, which are designed for the same steady-state value. In summary, this work has laid the foundations for more accurate and robust quantitative measurements by means of steady-state sequences. It has been shown that relaxation time spectra can be generated for each individual voxel. As a result, an improved evaluation is possible in order to be able to make more precise statements about the composition of a sample (especially in the case of human tissue). In addition, the theory for ultrafast 2D relaxography measurements was presented. First proof of principle experiments show that it is possible to measure and graph 2D relaxation time spectra in a very short time. This acquisition and data processing technique is unique in this form, and up to now in literature no faster method can be found.
5

Entwickelt sich eine Meningeose beim Medulloblastom gleichmäßig kranial und spinal? / Is the development of meningeosis in medulloblastomas uniformly cranial and spinal?

Trebin, Amelie January 2012 (has links) (PDF)
In der Nachsorge des Medulloblastoms wird standardmäßig auf die Bildgebung mittels Magnetresonanztomographie zurück gegriffen. Da die Erkrankung vor allem entlang der Liquorwege in Form einer kranialen oder spinalen Meningeose metastasiert, wurde anhand Daten der Therapieoptimierungsstudie "HIT 2000" verglichen, welche Lokalisation am häufigsten betroffen ist. Es zeigte sich, dass zu einem hohen Prozentanteil vor allem eine kombinierte Meningeose im Rezidiv oder Progress auftritt, gefolgt von einer kranialen Metastasierung. Dennoch gibt es eine Gruppe an Patienten, die eine isolierte spinale Meningeose entwickeln. / In the follow-up of patients with medulloblastoma, the MRI has been established as standard procedure. The tumor most often spreads via the cerebrospinal fluid as cranial oder spinal meningeoses. We compared the frequency of progress or relapse in children undergoing treatment according to the "HIT 2000" protocol. There could be shown, that the most common localization of meningeosis is both cranial and spinal, followed by isolated cranial meningeosis. Nevertheless there is a group of patients, developing an isolated spinal meningeosis.
6

Entwicklung klinischer Methoden zur Quantifizierung der longitudinalen Relaxationszeit T1 in der MRT / Development of clinical methods for quantifying the longitudinal relaxation time T1 in MRI

Gensler, Daniel January 2014 (has links) (PDF)
Die Aufgabenstellung in der vorliegenden Arbeit bestand in der Entwicklung und Umsetzung neuer T1-Quantifizierungsverfahren, die zuverlässig in der klinischen Routine angewendet werden können. Die ausgearbeiteten Techniken umfassten dabei zwei Hauptarbeitsschwerpunkte. Zum einen die Implementierung einer neuartigen dynamischen T1- Thermometriemethode für MR-Sicherheitsuntersuchungen medizinischer Geräte und Implantate, wie beispielsweise Kathetern oder Herzschrittmachern, und zum anderen die Entwicklung eines robusten kardialen T1-Mapping-Verfahrens, welches auch bei stärker erkrankten Patienten mit eingeschränkter Atemanhaltefähigkeit stabil anwendbar ist. Mit der entwickelten kombinierten Heiz- und T1-Thermometriesequenz konnte ein neues Verfahren präsentiert werden, mit dem ein zu untersuchendes medizinisches Gerät oder Implantat kontrolliert erwärmt und die Temperaturänderung zeitgleich präzise erfasst werden kann. Dabei war es möglich, die HF-induzierte Erwärmung der metallischen Beispielimplantate sowohl in homogenem Gel als auch in inhomogenem Muskelgewebe exakt und ortsaufgelöst zu quantifizieren. Die MR-technisch errechneten Temperaturwerte zeigten dabei eine sehr gute Übereinstimmung zu den ermittelten Referenzwerten mit einer Temperaturabweichung von meist weniger als 1K. Die Ergebnisse zeigen, dass es mit der präsentierten Methode möglich ist, die räumliche Temperaturverteilung in einem großen Bereich mit einer einzigen Messung quantitativ zu erfassen. Dies ist neben der Nichtinvasivität der Methode der größte Vorteil im Vergleich zu der Einzelpunktmessung mittels eines bei solchen Messungen sonst zumeist verwendeten fluoroptischen Temperatursensors. Bei gestreckten Implantaten kann demnach idealerweise das gesamte Objekt während einer einzigen Messung auf potentielle Temperaturänderungen oder sogenannte Hotspots untersucht werden, was bei der Verwendung von Temperatursensoren lediglich mit großem Zeitaufwand möglich ist, da hier die Temperatur jeweils nur punktuell erfasst werden kann. Im Vergleich zu anderen publizierten MR-Thermometrieverfahren, welche auf der PRF-Technik basieren, bietet die hier präsentierte Methode vor allem den Vorteil, dass hiermit auch eine präzise Temperaturquantifizierung in inhomogenem biologischem Gewebe mit starken Suszeptibilitätsunterschieden wie beispielsweise zwischen Herz und Lunge möglich ist. Somit stellt die Methode ein leistungsstarkes Hilfsmittel für nicht-invasive MR-Sicherheitsuntersuchungen nicht nur an medizinischen Implantaten sondern beispielsweise auch für MR-geführte Interventionen dar. Mit der entwickelten kardialen T1-Mapping-Sequenz TRASSI wurde eine leistungsstarke Methode zur exakten und hoch aufgelösten Generierung kardialer T1-Karten in äußerst kurzer Messzeit (< 6 s) vorgestellt. Durch ihre außerordentliche Robustheit sowohl gegenüber Bildartefakten als auch Herzrhythmusstörungen während der Datenakquisition bietet die Sequenz deutlich verbesserte Möglichkeiten für die Diagnostik verschiedener Herzerkrankungen. Aufgrund der sehr kurzen Akquisitionszeit wird insbesondere auch die Generierung von T1-Karten bei schwer erkrankten Patienten mit kurzer Atemanhaltefähigkeit ermöglicht. Im Vergleich zu derzeit üblicherweise verwendeten alternativen Verfahren wie etwa MOLLI, konnten die T1-Karten mit vergleichbarer Bildauflösung in bis zu 70% kürzerer Messzeit akquiriert werden. Die Ergebnisse der durchgeführten Phantommessungen belegen außerdem, dass die Methode exaktere T1-Werte liefert als dies beispielsweise mit MOLLI möglich ist. Des Weiteren weist TRASSI im Gegensatz zu MOLLI keine T1-Abhängigkeit von der Herzrate auf, wodurch die vorgestellte Technik besonders für diagnostische Studien geeignet ist, welche eine sehr hohe Genauigkeit und Reproduzierbarkeit im Zeitverlauf oder zwischen verschiedenen Patienten erfordern. Mit TRASSI konnten die Strukturen des Herzens bei den durchgeführten in vivo Untersuchungen durchweg mit scharfen Kanten und ohne Bewegungsartefakte dargestellt werden. Dabei wurde unabhängig von der Herzrate und der Bildebene stets eine sehr gute Bildqualität erreicht. Der Hauptgrund hierfür ist vermutlich in der sehr kurzen Akquisitionszeit und der radialen Datenaufnahme zu sehen. Beide Verfahren reduzieren Artefakte aufgrund von Bewegungen wie beispielsweise Herzschlag und Atmung erheblich. Die aufgenommenen T1-Karten zeigen bei allen Probanden und Patienten eine gute diagnostische Bildqualität. So konnten auch die infarzierten Bereiche bei Patienten mit Myokardinfarkt deutlich visualisiert und quantitativ erfasst werden. Nochmals hervorzuheben ist die beobachtete besondere Robustheit der TRASSI Methode gegenüber Artefakten beziehungsweise T1-Quantifizierungsfehlern bei Patienten mit Herzrhythmusstörungen. Auch bei untersuchten Patienten mit starken Arrhythmien während der Bildgebung konnte eine sehr gute Bildqualität und Genauigkeit der errechneten T1-Karten erreicht werden. Die Ergebnisse der Extrazellularvolumen-Quantifizierung zeigen zudem, dass mittels TRASSI auch weiterführende diagnostische Methoden entwickelt und angewandt werden können. Dabei konnten durch Rückrechnung hochaufgelöster und präziser Extrazellularvolumen-Karten beispielsweise Infarktbereiche deutlich visualisiert und signifikante Unterschiede zwischen akut und chronisch infarziertem Herzmuskelgewebe nicht nur identifiziert sondern auch quantitativ charakterisiert werden. Somit ist diese Methode insbesondere für eine potentielle Differenzierung zwischen reversibel und irreversibel geschädigten Herzarealen interessant. Für die Zukunft ist es wünschenswert, weitergehende Untersuchungen an verschiedenen spezifischen Herzerkrankungen vorzunehmen. Zu solchen Erkrankungen gehören beispielsweise die Herzmuskelentzündung (Myokarditis) oder Herzklappenerkrankungen. Diese Krankheitsbilder sind hinsichtlich einer möglichen transienten oder permanenten Schädigung des Herzmuskels mit den bisher verfügbaren Verfahren nur sehr schwer oder lediglich im weit fortgeschrittenen Stadium exakt diagnostizierbar. Die vorgestellte TRASSI-Sequenz bietet hier eine gute Möglichkeit für eine frühzeitige Erkennung der Auswirkungen solcher Erkrankungen auf den Herzmuskel. Weiterführende Untersuchungen der TRASSI-Methode zu deren Robustheit gegenüber spezifischen Herzrhythmusstörungen und ein umfassender Vergleich zum bereits etablierten MOLLI-Verfahren könnten darüber hinaus die Alltagstauglichkeit von TRASSI weiter spezifizieren und den Weg in die klinische Routine ebnen. Die bereits dargelegten positiven Ergebnisse des Verfahrens lassen vermuten, dass TRASSI potentiell ein sehr gutes nicht-invasives Diagnoseverfahren für verschiedenste Herzerkrankungen darstellt. Im Vergleich zu bereits bestehenden Techniken liegen die Vorteile der TRASSI-Methode nach den bisher vorliegenden Ergebnissen zusammenfassend vor allem in der Generierung diagnostisch verlässlicherer T1-Werte bei gleichzeitig verringerter Messzeit, wodurch das Verfahren insbesondere auch für schwer erkrankte Patienten mit starken Arrhythmien und eingeschränkter Atemanhaltefähigkeit geeignet ist. TRASSI ist darüber hinaus aber auch für MR-Untersuchungen im Hochfeld besser geeignet als entsprechende bSSFP-basierende Verfahren wie beispielsweise MOLLI. Dies liegt vor allem daran, dass TRASSI eine Gradientenecho-basierte Bildgebungsmethode ist und somit eine niedrige spezifische Absorptionsrate aufweist. Zudem sind Gradientenecho-Sequenzen allgemein weniger empfindlich gegenüber Suszeptibilitätsartefakten, so dass beispielsweise metallische Implantate bei Patienten sich weniger störend auf die erreichbare Bildqualität auswirken. In der vorliegenden Arbeit wurde sowohl eine exakte T1-Thermometriesequenz als auch eine sehr schnelle und präzise kardiale T1-Mapping-Methode vorgestellt. Für zukünftige Arbeiten ist es wünschenswert, beide Sequenzen bzw. deren Mechanismen zu vereinen und eine Temperaturquantifizierung am Herzen praktisch durchzuführen. Dies wäre zum einen für MR-Sicherheitsuntersuchungen von Schrittmacherelektroden in vivo vorteilhaft, und zum anderen wäre hiermit eine direkte Erfolgskontrolle während einer Katheterablation realisierbar. Eine solche Ablationsbehandlung könnte durch eine genaue Lokalisierung des behandelten - also erhitzten - Herzareals sehr viel präziser durchgeführt werden, wodurch auch bei komplexeren Ablationen die Behandlungserfolge erhöht werden könnten. In einer ersten Veröffentlichung hierzu konnte bereits gezeigt werden, dass eine MR-gestützte Katheterablation die Heilungs- und Erfolgsaussichten des Eingriffes steigern kann. Dieses Verfahren könnte potentiell mit Hilfe einer Echtzeittemperaturüberwachung basierend auf dem TRASSI-Verfahren noch weiter verbessert werden. In Zusammenfassung wurden in dieser Arbeit zwei neue T1-Quantifizierungsverfahren entwickelt und vorgestellt, die voraussichtlich zuverlässig im klinischen Alltag angewendet werden können und neue nicht-invasive diagnostische Möglichkeiten eröffnen. Die implementierten Sequenzen ermöglichen dabei zum einen eine exakte Temperaturquantifizierung und zum anderen ein präzises kardiales T1-Mapping. Beide Verfahren versprechen dabei robuste und reproduzierbare Ergebnisse und könnten in Zukunft den Weg in die klinische Routine finden und so bei einer fundierten Diagnostik verschiedenster Herzerkrankungen behilflich sein. / The goal of the present study was to develop and implement new T1-quantification methods that can be reliably applied in clinical practice. The elaborated techniques focused on two main objectives: first, the implementation of a novel dynamic T1-thermometry technique for MR-safety investigations of medical devices and implants, such as catheters or pacemakers; and second, the development of a robust cardiac T1-mapping method, which is applicable even in severely ill patients with limited breath-hold capabilities. With the newly developed combined heating and T1-thermometry sequence, a new MR method was presented, which allowed a controlled heating of a medical device or implant under investigation, while simultaneously detecting temperature changes near these devices with high accuracy. With this MR sequence it was possible to quantify and spatially accurately resolve the radio frequency-induced heating of exemplary metallic implants both in a homogeneous gel phantom and in inhomogeneous porcine muscle. The MR-calculated temperature values showed good agreement with the determined reference values, with a temperature deviation of usually less than 1K. The results show that with the presented method it is possible to quantify the spatial temperature distribution in a large area. This is - in addition to the non-invasiveness of the method - the main advantage compared to the single-point measurement of commonly used fluoroptic temperature sensors: Ideally, elongated implants can be characterized regarding potential temperature changes or hot spots along the whole device during a single MR measurement. Compared to other published MR-thermometry methods based on the PRF technique the presented T1-based technique particularly provides the advantage of a precise temperature quantification even in inhomogeneous biological tissue with strong susceptibility differences such as between the heart and the lungs. Thus, the method represents a powerful tool for non-invasive MR-safety investigations not only for implanted medical devices, but also for MR-guided interventions. With the developed cardiac T1-mapping sequence TRASSI, a powerful technique for the generation of exact, high-resolution cardiac T1-maps acquired in very short measurement time (< 6 s) was presented. Through the extraordinary robustness both to image artifacts and heart rhythm disturbances during data acquisition, this sequence provides significantly improved possibilities for various diagnostic purposes in clinical cardiology. Due to the very short acquisition time, TRASSI particularly offers the possibility for the generation of T1-maps in severely ill patients with short breath-hold capabilities. Compared to currently commonly used alternative MR techniques, such as MOLLI, T1-maps with similar resolution could be acquired in up to 70 % shorter measurement time. Furthermore, the results of the phantom measurements show that TRASSI provides more accurate T1 values than MOLLI. In addition, TRASSI shows - in contrast to MOLLI - no heart rate T1-dependency. Thus, the presented technique is particularly suited for diagnostic studies, which require a very high accuracy and reproducibility over time or between different patients. With TRASSI, the heart morphology could consistently be identified with sharp edges and without any motion artifacts in the performed in vivo studies. The good image quality could be achieved in all measurements regardless of the heart rate and the image plane. The main reason for these findings can be anticipated in the very short acquisition time and the radial data acquisition. Both significantly reduce artifacts due to motion such as heartbeat and breathing. Diagnostic image quality of the T1 maps in patients with myocardial infarction allowed for visualization and spatial T1-quantification in all subjects. Of note is the observed extraordinary robustness of the TRASSI method against artifacts and T1-errors in patients with cardiac arrhythmias. Even in patients with severe arrhythmias during the imaging procedure a very good image quality and accuracy of the calculated T1-maps could be achieved. Moreover, the results of the extracellular volume quantification show that with TRASSI additional diagnostic methods can be developed and applied. The calculation of accurate high-resolution extracellular volume maps was suitable for visualization of infarcted areas in the myocardium. Furthermore, significant differences between acute and chronically infarcted myocardial tissue could not only be visually identified, but also quantitatively characterized. Thus, this method is particularly interesting for a differentiation between reversible and irreversible myocardial injury. For the future, it is desirable to carry out further clinical studies on various specific heart diseases. Such diseases include, for example, inflammation of the heart muscle (myocarditis) or valvular heart diseases. The diagnosis of these diseases regarding a possible damage of the myocardium is currently problematic and only possible in advanced stages using the methods available today. Here, the presented TRASSI sequence provides a favorable opportunity for the early detection of transient or permanent myocardial damage. Further studies of TRASSI for its robustness against specific cardiac arrhythmias and a comprehensive comparison with the already established MOLLI method could further confirm the everyday practicality of TRASSI and pave the way into clinical routine. The already available positive results of TRASSI suggest this method to be well suited as a non-invasive diagnostic technique for various heart diseases. From the experiments available, it can be concluded that, compared to existing techniques like MOLLI, TRASSI provides more accurate T1-values in a simultaneously reduced measurement time. This positions TRASSI particularly suitable for severely ill patients with distinctive arrhythmias and/or reduced breath-hold capabilities. In addition, TRASSI is better suited for high field MR examinations than corresponding bSSFPbased methods such as MOLLI. This is because TRASSI is a gradient echo-based imaging method and thus it has a lower specific absorption rate. Gradient echo-based sequences are also generally less sensitive to susceptibility artifacts and thus interferences caused by metallic implants of correspondent patients show less negative effects on image quality. In the current work an exact T1-thermometry sequence as well as a very fast and accurate cardiac T1-mapping method was presented. For future work, it is desirable to combine these two sequences and their mechanisms to be able to perform accurate temperature quantification in the beating heart. This would be on the one hand beneficial for MR-safety examinations of pacemaker electrodes in vivo, and on the other hand allow for a direct control of success during catheter ablation. Hence, a catheter ablation procedure could be performed with greatly increased spatial accuracy due to precise localization of heat development in the myocardium. Consequently, the safety and outcomes especially in complex ablations could be increased. In a first publication it could be already shown that MR-guided catheter ablation has the potential to increase procedural success in the future. This interventional technique could potentially be further improved by implementation of a real-time temperature visualization using TRASSI. In summary, two new T1-quantification methods have been developed and presented in this work, which can be reliably applied in clinical practice and which are expected to allow for new non-invasive diagnostic possibilities. The implemented sequences allow on the one hand exact temperature quantification in the myocardium and on the other hand accurate cardiac T1-mapping. Both methods promise robust and reproducible results, so that they are expected to find the way into clinical routine, helping in diagnosis and treatment of various heart diseases in the near future.
7

Entwicklung von neuen Sequenzen mit ultrakurzen Echozeiten für die klinische Magnetresonanzbildgebung / Development of New Sequences with Ultrashort Echo Times for Clinical Magnetic Resonance Imaging

Grodzki, David Manuel January 2011 (has links) (PDF)
Stoffe mit schnell zerfallendem Magnetresonanz (MR)-Signal sind mit herkömmlichen MR- Sequenzen nicht darstellbar. Solche Stoffe haben meist starke Bindungen, wie im menschlichen Körper beispielsweise Sehnen, Bänder, Knochen oder Zähne. In den letzten Dekaden wurden spezielle Sequenzen mit ultrakurzer Echozeit entwickelt, die Signale von diesen Stoffen messen können. Messungen mit ultrakurzen Echozeiten eröffnen der Kernspintomographie neue Anwendungsgebiete. In dieser Doktorarbeit werden die in der Literatur bekannten Methoden zur Messung mit ultrakurzen Echozeiten untersucht und evaluiert. Es werden zwei neue, in dieser Arbeit entwickelte Ansätze vorgestellt, die es zum Ziel haben, bestehende Probleme der vorhandenen Methoden bei robuster Bildqualität zu lösen, ohne auf Hardwareänderungen am Kernspintomographen angewiesen zu sein. Die ’Gradient Optimized Single Point imaging with Echo time Leveraging’ (GOSPEL) Sequenz ist eine Single-Point-Sequenz, die im Vergleich zu den bekannten Single-Point-Sequenzen eine stark reduzierte Echozeit ermöglicht. Es wird gezeigt, dass dadurch ein deutlich besseres Signalzu-Rausch-Verhältnis (SNR) von Stoffen mit schnell zerfallendem Signal erreicht wird. Das Problem der sehr langen Messzeit bei Single-Point-Verfahren wird mit der ’Pointwise Encoding Time reduction with Radial Acquisition’ (PETRA) Sequenz gelöst. Bei diesem Ansatz wird der k-Raum-Außenbereich radial und das k-Raum-Zentrum single-point-artig abgetastet. Durch die Kombination beider Akquisitionsstrategien ist eine schnelle und robuste Bildgebung mit ultrakurzer Echozeit und ohne Hardwareänderungen möglich. Wie bei anderen Ansätzen sind bei der PETRA-Sequenz die Bildgebungsgradienten zum Anregungszeitpunkt bereites angeschaltet. Es wird untersucht, welchen Einfluss ungewollte Schichtselektionen auf die Bildgebung haben können und ein Korrekturalgorithmus entwickelt, mit dem sich dadurch entstehende Artefakte im Bild beheben lassen. Die Limitationen des Korrekturalgorithmus sowie mögliche Artefakte der PETRA-Sequenz werden untersucht und diskutiert. Erste Anwendungsbeispiele der PETRA-Sequenz bei verschiedenen Feldstärken und Applikationen werden demonstriert. Wie bei anderen Sequenzen mit ultrakurzen Echozeiten sind die Gradientenaktivitäten bei der PETRA- und GOSPEL-Sequenz gering, wodurch die Messung sehr leise sein kann. Lautstärkemessungen zeigen, dass bei Messungen mit der PETRA-Sequenz der Geräuschpegel um nur ein bis fünf dB(A) im Vergleich zum Hintergrundgeräuschpegel steigt. Es wird demonstriert, dass sich dadurch neue Anwendungsgebiete eröffnen könnten. Vergleichsmessungen zwischen einer T1-gewichteten PETRA- und einer MPRAGE-Messung weisen Bilder auf, die in Kontrast, Auflösung, SNR und Messzeit vergleichbar sind. Mit den in dieser Arbeit entwickelten Methoden konnten Probleme bestehender Ansätze gelöst und offene Fragen beantwortet werden. Die Ergebnisse können helfen, Applikationen von Sequenzen mit ultrakurzen Echozeiten in der klinischen Routine weiter zu etablieren. / Tissues with fast decaying magnetic resonance (MR) signal are not measureable with conventional MR sequences. These tissues mostly have strong covalent bondings, like in the human body tendons, ligaments, bones and teeth. In the last decade, special MR sequences with ultrashort echo times have been developed that are able to depict signal from those tissues. Ultrashort echo time imaging opens new application fields for magnetic resonance imaging. In this thesis, the known methods for imaging with ultrashort echo times are investigated and evaluated. Two new approaches that were developed in this work are presented. They aim to solve the problems of the previous methods and to allow for robust image quality. No hardware changes should be required for the MR scanner. The ’Gradient Optimized Single Point imaging with Echo time Leveraging’ (GOSPEL) sequence is a single-point sequence. Compared to the known single-point sequences, GOSPEL enables a reduced echo time. It is demonstrated that this allows for an enhanced SNR for tissues with fast decaying signal. The problem of very long measurement times with single point sequences is solved with the ’Pointwise Encoding Time reduction with Radial Acquisition’ (PETRA) sequence. In this approach, outer k-space is acquired with radial half-projections while the k-space center is acquired single-pointwise. The combination of these two acquisition strategies allows for fast and robust ultrashort echo time imaging without the need for hardware changes. Comparable to other approaches, the imaging gradients at the PETRA sequence are already switched on during the excitation pulse. The influence of unwanted slice-selectivity of the pulse is investigated. A newly developed correction algorithm is presented that eliminates artefacts due to unwanted slice-selectivity. The limitations of the correction approach are presented and discussed. A number of application examples of the PETRA sequence at different field strengths is demonstrated. The PETRA and GOSPEL sequence, and other ultrashort echo time sequences, have very limited gradient activities. Due to this, the measurements can be kept very silent. Acoustic noise measurements show that the acoustic noise level during PETRA examinations is only raised by one to five dB(A). It is demonstrated, that this might enable new applications. Comparing measurements between T1-weighted PETRA images and MPRAGE images lead to images with comparable contrast, resolution, SNR and measurement times. With the methods developed in this thesis, issues of existing ultrashort echo time approaches can be solved and answers to open questions are given. The outcomes could help to further establish the use of ultrashort echo time sequences in clinical routine applications.
8

Erweiterung der Anatomischen Abdeckung in der MRT des Herzens / Anatomic Coverage Extension in Cardiac MRI

Stäb, Daniel January 2013 (has links) (PDF)
Die MRT hat sich in den letzten Jahren zu einem wichtigen Instrument in der Diagnostik von Herzerkrankungen entwickelt. Da sie ohne ionisierende Strahlung auskommt, stellt sie vor allem auch eine nichtinvasive Alternative zu den nuklearmedizinischen Verfahren und der Computertomographie dar. Im speziellen ermöglicht die kardiale MRT die ortsaufgelöste Darstellung des Herzens mit einer Vielzahl an Kontrasten. Neben der Morphologie können damit auch zahlreiche Funktionsparameter des Herzens, wie die Ejektionsfraktion des linken Ventrikels, oder die Viabilität und Perfusion des Herzmuskels untersucht werden. Atmung und Herzbewegung stellen allerdings große Anforderungen an die MR-Herzbildgebung. Die beiden Störfaktoren limitieren den Zeitraum, der zur Bildakquisition zur Verfügung steht und erzeugen so Konflikte zwischen räumlicher Auflösung, anatomischer Abdeckung, zeitlicher Auflösung und dem Signal-zu-Rausch-Verhältnis (SNR). Ferner ergibt sich für die meisten eingesetzten Verfahren eine erhöhte Komplexität. Die Bildgebungssequenzen müssen mittels EKG an den Herzrhythmus des Patienten angepasst und die Bildakquisitionen im Atemanhaltezustand durchgeführt werden. In manchen Fällen ist sogar eine Aufspaltung der Messung in mehrere Einzelakquisitionen nötig, was wiederum die Dauer der Untersuchungen verlängert und den Patientenkomfort reduziert. Mit technischen Entwicklungen im Bereich der Gradienten und der Empfangsspulen sowie durch den Einsatz dedizierter Bildgebungstechniken konnten in den letzten Jahren signifikante Verbesserungen erzielt und der Stellenwert der MR-Bildgebung in der Herzdiagnostik erhöht werden. Von großer Bedeutung sind dabei auch Beschleunigungsverfahren wie die Parallele Bildgebung, die eine deutliche Verkürzung der Datenakquisition ermöglichen und so den Einfluss von Atmung und Herzbewegung wirksam reduzieren. Die Beschleunigung wird dabei grundsätzlich durch eine unvollständige Datenakquisition bzw. Unterabtastung des k-Raums erzielt, welche im Zuge der Bildrekonstruktion durch Ausnutzen zusätzlich vorhandener Informationen kompensiert wird. Bei der Parallelen Bildgebung ersetzen beispielsweise mehrere um das Objekt herum angeordnete Empfangsspulen die zum Teil unvollständig durchgeführte Gradientenbasierte Ortskodierung. Die Beschleunigungsverfahren sind allerdings wegen der verringerten Datenaufnahme auch immer mit einer Reduktion des SNR verbunden. Eine alternative Strategie zur Beschleunigung der 2D-Bildgebung mit mehreren Schichten stellt die simultane Multischichtbildgebung mit Multi-Slice Controlled Aliasing In Parallel Imaging Results In Higher Acceleration(MS-CAIPIRINHA) dar. Anders als bei der konventionellen Parallelen Bildgebung wird die Beschleunigung hier nicht durch eine reduzierte Datenaufnahme erzielt. Vielmehr werden Multiband-RF-Pulse eingesetzt, um die Spins in mehreren Schichten gleichzeitig anzuregen. Durch Anwenden schichtspezifischer RF-Phasenzyklen wird die Phase der Spins individuell in jeder Schicht moduliert, wodurch sich eine gegenseitige Verschiebung der Schichten im FOV ergibt. Die Verschiebung erleichtert die Separation der gleichzeitig angeregten Schichten mit Verfahren der Parallelen Bildgebung. Sie erlaubt außerdem eine Minimierung der bei der Rekonstruktion entstehenden Rauschverstärkung. Die Multischichtbildgebungstechnik zeichnet sich gegenüber der konventionellen Parallelen Bildgebung durch ein wesentlich höheres SNR und durch eine Bildrekonstruktion mit geringeren Rekonstruktionsfehlern aus. In dieser Dissertation wurden verschiedene Strategien zur Anwendung von MS-CAIPIRINHA in der MRT des Herzens präsentiert sowie ihre Vorund Nachteile gegenübergestellt. Im Allgemeinen ermöglichen die vorgestellten Konzepte eine hinsichtlich des SNR sehr effiziente Erweiterung der anatomischen Abdeckung. Unter anderem wurde eine Möglichkeit vorgestellt, mit der es uneingeschränkt gelingt, MS-CAIPIRINHA in der Bildgebung mit bSSFP-Sequenzen anzuwenden. Die Steady-State-Sequenz wird aufgrund ihres hohen intrinsischen SNR und vorteilhaften Kontrastverhaltens sehr häufig in der MRT des Herzens bei 1,5T eingesetzt. Wie auch die simultane Multischichtbildgebung erfordert sie zum Halten der Magnetisierung im stationären Zustand die Applikation eines dedizierten RF-Phasenzyklus während der Datenakquisition. Der Phasenzyklus der Sequenz ist allerdings nicht ohne Weiteres mit den Phasenzyklen der Multischichttechnik kompatibel, so dass eine Verknüpfung der beiden Verfahren bisher nur durch Aufspalten der Bildakquisition in mehrere Teilmessungen gelang. Mit dem in Kapitel 5 vorgestellten Konzept ist diese zumeist impraktikable Segmentierung nicht mehr erforderlich. Generalisierte RF-Phasenzyklen, die sowohl die Anforderungen der Sequenz, als auch die der Multischichtbildgebung erfüllen, ermöglichen eine uneingeschränkte Anwendung der Multischichttechnik in der Bildgebung mit bSSFP oder vergleichbaren Steady-State-Sequenzen. Die Multischichttechnik ist damit auch bei Untersuchungen in Echtzeit oder mit Magnetisierungspräparation – Verfahren, die unter anderem in der MR-Herzdiagnostik Verwendung finden – einsetzbar. Anhand von Echtzeit-, Cine- und First-Pass-Herzperfusionsuntersuchungen am menschlichen Herzen konnte die Anwendbarkeit des Konzepts erfolgreich demonstriert werden. Durch die Akquisition zweier Schichten in der Zeit, die normalerweise zur Bildgebung einer einzelnen Schicht benötigt wird, gelang eine Verdoppelung der anatomischen Abdeckung bei unverändert hoher Bildqualität. Bei den Herzperfusionsuntersuchungen konnten je RR-Intervall sechs Schichten akquiriert werden. Bei Echtzeit- und Cine-Messungen erlaubt das Konzept eine signifikante Reduktion der Anzahl der Atemanhaltezustände und dementsprechend eine wirksame Verkürzung der Patientenuntersuchung und eine Verbesserung des Patientenkomforts. In Kapitel 6 wurde eine effiziente Strategie zur Anwendung der simultanen Multischichtbildgebung in der First-Pass-Herzperfusionsbildgebung bei 3T vorgestellt. Es wurde gezeigt, dass durch den Einsatz von MS-CAIPIRINHA mit Beschleunigungsfaktoren, die größer sind als die Anzahl der simultan angeregten Schichten, neben der anatomischen Abdeckung auch die räumliche Auflösung innerhalb der Bildgebungsschicht erhöht werden kann. Beide Verbesserungen sind für die MR-gestützte Diagnostik der Koronaren Herzerkrankung von Bedeutung. Während mit einer hohen räumlichen Auflösung subendokardiale und transmurale Infarktareale unterschieden werden können, erleichtert eine hohe anatomische Abdeckung die genaue Eingrenzung hypoperfundierter Bereiche. Das grundsätzliche Prinzip der vorgestellten Strategie besteht in der Kombination zweier unterschiedlicher Beschleunigungsansätze: Zur Verbesserung der anatomischen Abdeckung kommt die simultane Multischichtbildgebung zum Einsatz. Zusätzlich zur gleichzeitigen Anregung mehrerer Schichten wird der k-Raum regelmäßig unterabgetastet. Die dabei erzielte Beschleunigung wird zur Verbesserung der räumlichen Auflösung eingesetzt. Die Bildrekonstruktion erfolgt mit Verfahren der Parallelen Bildgebung. Der Vorteil des Konzepts liegt insbesondere im vollständigen Erhalt der Datenakquisitionszeit gegenüber einer unbeschleunigten Messung mit Standardabdeckung und -auflösung. Anders als bei konventionellen Beschleunigungsverfahren wirken sich lediglich die Verkleinerung der Voxelgröße sowie die Rauschverstärkung der Bildrekonstruktion SNR-reduzierend aus. Die Rauschverstärkung wird dabei, durch die gegenseitige Verschiebung der simultan angeregten Schichten im FOV, so gering wie möglich gehalten. Die Anwendbarkeit des Konzepts konnte anhand von Simulationen sowie Untersuchungen an Probanden und Herzinfarktpatienten erfolgreich demonstriert werden. Simultanes Anregen zweier Schichten und 2,5-faches Unterabtasten des k-Raums ermöglichte die Durchführung von Untersuchungen mit einer anatomischen Abdeckung von sechs bis acht Schichten je RR-Intervall und einer räumlichen Auflösung von 2,0×2,0×8,0mm3. Es konnte gezeigt werden, dass die angewandte GRAPPA-Rekonstruktion, trotz der effektiv fünffachen Beschleunigung, robust und im Wesentlichen mit geringer Rauschverstärkung durchführbar ist. Bildqualität und SNR waren für eine sektorweise Absolutquantifizierung der Myokardperfusion ausreichend, während die hohe räumliche Auflösung die Abgrenzung kleiner subendokardialer Perfusionsdefizite ermöglichte. Aufgrund seiner großen Flexibilität und recht einfachen Implementierbarkeit ist das Beschleunigungskonzept vielversprechend hinsichtlich einer Anwendung in der klinischen Routine. Die diesbezügliche Tauglichkeit ist allerdings in weiterführenden Patientenstudien noch zu evaluieren. Alternativ zu diesem Konzept wurde in Kapitel 7 noch eine weitere, ebenfalls auf MS-CAIPIRINHA basierende Strategie für die First-Pass-Herzperfusionsbildgebung bei 3T mit großer anatomischer Abdeckung und hoher räumlicher Auflösung vorgestellt. Wie zuvor bestand die Grundidee des Konzepts darin, MS-CAIPIRINHA mit Beschleunigungsfaktoren anzuwenden, welche größer sind als die Anzahl der simultan angeregten Schichten und die Vergrößerung der anatomischen Abdeckung durch simultanes Anregen mehrerer Schichten zu realisieren. Um allerdings die bei der Bildrekonstruktion und Schichtseparation entstehende Rauschverstärkung zu minimieren, wurde zur Verbesserung der räumlichen Auflösung innerhalb der Schicht das nichtlineare Beschleunigungsverfahren Compressed Sensing zum Einsatz gebracht. Die erst in den letzten Jahren entwickelte Technik ermöglicht die exakte Rekonstruktion zufällig unterabgetasteter Daten, sofern bekannt ist, dass sich das rekonstruierte Bild in eine wohldefinierte sparse Darstellung überführen lässt. Neben der Erreichbarkeit hoher Beschleunigungsfaktoren bietet Compressed Sensing den Vorteil einer Bildrekonstruktion ohne signifikante Rauscherhöhung. Zur Einbindung des Verfahrens in das Multischichtbildgebungskonzept erfolgt die für die Verbesserung der Auflösung nötige Unterabtastung des k-Raums, zufällig und inkohärent. Zur Bildrekonstruktion sind zwei Teilschritte erforderlich. Im ersten Teilschritt werden die durch die zufällige Unterabtastung entstandenen inkohärenten Artefakte mit Compressed Sensing entfernt, im zweiten die gleichzeitig angeregten Schichten mit Verfahren der Parallelen MRT separiert. Es konnte gezeigt werden, dass die Kombination aus Compressed Sensing und MS-CAIPIRINHA eine Reduktion der inhomogenen Rauschverstärkung ermöglicht und zur Durchführung von qualitativen First-Pass-Herzperfusionsuntersuchungen mit einer Abdeckung von sechs bis acht Schichten je RR-Intervall sowie einer räumlichen Auflösung von 2,0 × 2,0 × 8,0mm3 geeignet ist. Des Weiteren konnte gezeigt werden, dass das angewandte Multischicht-Bildgebungskonzept einer Anwendung des entsprechenden Compressed-Sensing-Konzepts ohne simultane Multischichtanregung überlegen ist. Es stellte sich allerdings auch heraus, dass die rekonstruierten Bilder mit systematischen Fehlern behaftet sind, zu welchen auch ein signifikanter rekonstruktionsbedingter Verlust an zeitlicher Auflösung zählt. Dieser kann zu einer Verzerrung quantitativ bestimmter Perfusionswerte führen und verhindert so robuste quantitative Messungen der Myokardperfusion. Es ist außerdem davon auszugehen, dass auch abrupte Signalveränderungen, die bei Arrhythmien oder Bewegung auftreten, nur sehr ungenau rekonstruiert werden können. Die Systematischen Rekonstruktionsfehler konnten anhand zweier Verfahren, einer Monte-Carlo-Simulation sowie einer Analyse der lokalen Punktantworten präzise Untersucht werden. Die beiden Analysemethoden ermöglichten einerseits die genaue Bestimmung systematischer und statistischer Abweichungen der Signalamplitude und andererseits die Quantifizierung rekonstruktionsbedingter zeitlicher und räumlicher Auflösungsverluste. Dabei konnte ein Mangel an Sparsität als grundlegende Ursache der Rekonstruktionsfehler ermittelt werden. Die bei der Analyse eingesetzten Verfahren erleichtern das Verständnis von Compressed Sensing und können beispielsweise bei der Entwicklung nichtlinearer Beschleunigungskonzepte zur Bildqualitätsanalyse eingesetzt werden. / In the recent years Magnetic Resonance Imaging (MRI) has become a powerful clinical tool for the diagnosis of cardiovascular diseases. In fact, getting along without ionizing radiation, the technique represents a noninvasive alternative to computed tomography or nuclear medicine treatment. In cardiac MRI, the heart can be imaged with a large variety of contrasts, which helps assessing not only morphologic but also functional information like the ejection fraction of the left ventricle or the viability and perfusion of the myocardium. However, having to deal with a moving organ, cardiac MRI is very challenging. In particular, breathing and the motion of the heart restrict the time available for imaging and a trade-off has to be found between signal-to-noise ratio (SNR), spatial resolution, anatomic coverage and temporal resolution. In addition, the motion enforces complexity. In-vivo examinations have to be performed in breath hold and ECG triggering has to be applied in order to adopt the sequences to the cardiac cycle. In several cases, measurements have to be split into multiple acquisitions which significantly prolongs the examination and reduces the patient comfort. Nevertheless, recent advances in gradient and receiver coil design in addition to the development of dedicated sequences for imaging led to significant improvements and helped strengthening the role of MRI in the diagnosis of cardiovascular diseases. A major part of the improvements has been achieved by employing acceleration techniques like Parallel Imaging. By substantially shortening the data acquisition they allow reducing the impact of motion onto the examinations. The acceleration is basically achieved by undersampling k-space, i.e. performing the data acquisition incompletely. The lack of data is compensated by making use of additional information inherently available. In Parallel Imaging for example, multiple receiver coils positioned around the subject to be investigated are utilized to partially replace the spatial encoding conventionally performed by gradient switching. However, employing these acceleration strategies always comes along with a reduction of the SNR since the time utilized for data sampling is shortened. For accelerating 2D measurements of multiple slices, an alternative approach is given by the simultaneous multi-slice imaging technique Multi-Slice Controlled Aliasing In Parallel Imaging Results In Higher Acceleration (MS-CAIPIRINHA). Unlike conventional Parallel Imaging, which requires shortening of the data acquisition, the technique provides acceleration by exciting the spins in multiple slices at the same time using multi-band radio frequency (rf) pulses. The slices are provided with specific rf phase cycles that allow shifting the simultaneously excited slices with respect to each other in the FOV. The shift facilitates the separation of the slices using Parallel Imaging reconstruction techniques. Moreover, it allows minimizing the inhomogeneous noise amplification coming along with the reconstruction. With respect to conventional Parallel Imaging, MS-CAIPIRINHA benefits from considerably higher SNR and an image reconstruction with less reconstruction errors. In this thesis several strategies for employing the simultaneous multi-slice imaging technique in the field of cardiac MRI have been presented together with their advantages and disadvantages. In general, the individual concepts allow for increasing the anatomic coverage in a very SNR efficient manner. First of all, a concept was presented that allows applying MS-CAIPIRINHA to bSSFP sequences. Providing an advantageous image contrast and intrinsically high SNR, the steady-state sequence is often utilized for cardiac MR examinations at field strengths of 1,5T. Like the simultaneous multi-slice imaging technique, it requires the strict application of a dedicated rf phase cycle to keep the magnetization in steady state. However, this rf phase cycle is incompatible to the rf phase cycles usually employed in MS-CAIPIRINHA. Thus, the combination of the two methods is impaired unless the imaging procedure is split into several measurements. This rather impractical segmentation is not required utilizing the concept proposed in chapter 5. By employing generalized rf phase cycles that match the requirements of the simultaneous multi-slice imaging technique while simultaneously fulfilling the steady state condition of the sequence, MS-CAIPIRINHA can be employed unrestrictedly to bSSFP or similar steady state sequences. The simultaneous multi-slice imaging technique is thus also applicable to magnetization prepared and real-time imaging modalities. Both types of examinations are frequently utilized in cardiac MRI. The applicability of the concept was successfully demonstrated for real-time cine, segmented cine and myocardial first-pass perfusion imaging. By scanning two slices in the time conventionally required for the acquisition of one single slice, the anatomic coverage could be doubled while maintaining the image quality almost completely. The myocardial first-pass perfusion examinations for example could be performed with a coverage of six slices every RR-interval. In real-time and cine imaging, the concept allows significantly reducing the number of breath holds that have to be performed. Thus, the examination is considerably shortened and the patient comfort ameliorated. In chapter 6, an efficient strategy for applying MS-CAIPIRINHA to contrast enhanced myocardial first-pass perfusion imaging at 3T was presented. It could be shown that by employing the simultaneous multi-slice imaging technique with an acceleration factor higher than the number of simultaneously excited slices, not only the anatomic coverage but also the spatial resolution can be increased. Both improvements are of importance for the MRI based diagnosis of coronary artery disease. While a high spatial resolution allows distinguishing between transmural and subendocardial hypoperfused regions, a large anatomic coverage facilitates their exact localization. The proposed technique is based on the combination of two different acceleration approaches: For increasing the anatomic coverage the simultaneous multi-slice imaging technique is employed. In addition to exciting multiple slices at once, k-space is regularly undersampled. This supplemental acceleration is utilized to increase the spatial resolution. Image calculation and slice separation is performed using conventional Parallel Imaging reconstruction techniques. In particular, the concept benefits from conserving the image acquisition time with respect to a non-accelerated examination with standard coverage and resolution. In contrast to conventional acceleration techniques, where significantly higher undersampling has to be performed, only the voxel size and the inhomogeneous noise amplification contribute to the SNR reduction. Moreover, the noise amplification is minimized by shifting the simultaneously excited slices with respect to each other in the FOV. The applicability of the concept was demonstrated on volunteers and patients. By exciting two slices at the same time and additionally undersampling k-space by a factor of 2.5, an anatomic coverage of six to eight slices every RR-interval and a spatial resolution of 2,0×2,0×8 0mm3 were achieved. The applied GRAPPA reconstruction algorithm was shown to allow for a robust image reconstruction with basically low noise amplification. The spatial resolution facilitated the differentiation between subendocardial and transmural hypoperfused areas and the image quality as well as the SNR were sufficiently high for a sectorwise absolute quantitative estimation of the myocardial blood flow. Regarding the high flexibility and simple applicability in addition to the robustness and speed of the image reconstruction, the concept is a promising candidate for clinical perfusion studies. However, further patient studies are required to prove the applicability of the concept in clinical routine. As an alternative to this concept, in chapter 7, a different acquisition strategy for myocardial first-pass perfusion imaging with extended coverage and high spatial resolution based on MS-CAIPIRINHA was presented. As before, the underlying idea was to apply the multi-slice imaging technique with acceleration factors higher than the number of slices excited at the same time and to achieve the anatomic coverage extension by means of simultaneous multislice excitation. Nevertheless, in order to minimize the inhomogeneous noise amplification coming along with the image reconstruction, the nonlinear acceleration method Compressed Sensing was employed for increasing the spatial resolution within the imaging plane. This recently developed acceleration technique allows exactly reconstructing MR images from randomly undersampled data as far as the reconstructed image can be sparsified by applying a well-defined transformation. The technique allows for high acceleration factors and benefits from an image reconstruction without significant noise amplification. In order to apply Compressed Sensing to the multi-slice imaging concept, the undersampling for resolution improvement is performed randomly and the image reconstruction is carried out in two separate steps. First, Compressed Sensing is applied in order to remove the incoherent artifacts introduced by random undersampling. Second, the slices are separated by applying conventional Parallel Imaging reconstruction techniques. It could be shown that combining MS-CAIPIRINHA with Compressed Sensing allows reducing the noise amplification and facilitates myocardial first-pass perfusion imaging with an anatomic coverage of six to eight slices every heartbeat and a spatial resolution of 2.0×2.0×8.0mm3. Moreover, it could be shown that the technique is superior to employing the Compressed Sensing concept without simultaneous multi-slice excitation. However, the concept also comes along with an impairment of image quality by systematic reconstruction errors. Amongst the latter for example there is a loss of temporal resolution, which might induce significant errors in a quantitative perfusion analysis. Robust quantitative measurements of the myocardial blood flow are thus not feasible so far. In presence of arrhythmia or motion, significant reconstruction errors, having a major impact onto the quality and the temporal fidelity of the measurement are expected. The systematic reconstruction errors could be precisely analyzed by employing a simple Monte Carlo simulation and a dedicated local point spread function analysis. The two specific tools were utilized to reveal the systematic and statistical deviations of the signal amplitude as well as the spatiotemporal resolution losses. A lack of sparsity could thereby be identified as the basic error cause. In general, the evaluation tools provide useful information for understanding the nonlinear character of Compressed Sensing and may be utilized for image quality analysis in the development of nonlinear reconstruction concepts.
9

Absolutquantifizierung der myokardialen Perfusion mit hochauflösender MRT bei 3 Tesla / Absolute Quantification of Myocardial Perfusion Using High-Resolution MRI at 3 T

Fuchs, Kilian January 2014 (has links) (PDF)
In den letzten Jahren hat die myokardiale MR-Perfusionsbildgebung als nichtinvasives Verfahren zur Darstellung von funktionellen Veränderungen des Myokards für die Diagnostik der KHK zunehmend an Bedeutung gewonnen. Während in den letzten 20 Jahren die kardiale MRT überwiegend bei einer Magnetfeldstärke von 1,5 T durchge-führt wurde und dies auch immer noch wird, findet aktuell eine rasante Verbreitung von MR-Systemen höherer Feldstärken statt. Von der neuen Hochfeldtechnik erhofft man sich vor allem, je nach Anwendung, eine deutliche Verbesserung der Bildqualität mit höherer räumlicher und zeitlicher Auflösung, wodurch der diagnostische Nutzen noch weiter gesteigert werden könnte. In der vorliegenden Arbeit wurden mittels First-Pass-MR-Bildgebung bei einer Magnet-feldstärke von 3 T quantitative Werte für die myokardiale Perfusion von 20 gesunden Probanden unter Ruhebedingungen bestimmt. Sowohl die erhobenen absoluten Perfusionswerte (0,859 ml/g/min im Mittel) als auch die Standardabweichung des mittleren MBF (0,298 ml/g/min) entsprechen den Messungen aus den früheren Publikationen dieser Arbeitsgruppe. In der Gesamtzusammenschau bisher veröffentlichter Perfusionsstudien zeigt sich eine relativ große Variabilität der publizierten Ruheflüsse. Dabei liegt der absolute MBF dieser Arbeit im mittleren Wertebereich dieser Streubreite. Er lässt sich auch mit den in PET-Studien ermittelten Ergebnissen in Einklang bringen, welche als Goldstandard zur Bestimmung der absoluten myokardialen Perfusion beim Menschen gelten. Die vorliegende Arbeit bestätigt die bereits in anderen 3 T-Studien untersuchten Vorteile der Hochfeld-MRT. Die höhere Magnetfeldstärke ermöglicht durch das größere SNR eine signifikant bessere räumliche Auflösung und besticht vor allem durch die hohe Bildqualität. Dies könnte bei der Erkennung kleiner, subendokardial gelegener Perfusionsdefekte sowie der Erstellung von transmuralen Perfusionsgradienten von Bedeutung sein und verspricht neben einer Reduktion von Partialvolumeneffekten auch eine Verminderung von „dark rim“-Artefakten. Um diese Vorteile entsprechend nutzen zu können, wird die Entwicklung von Methoden zur pixelweisen Bestimmung der absoluten Flüsse und farblich kodierten Darstellung derselben in Form von Perfusionskarten ein weiterer Schritt in Richtung klinisch einsetzbare Diagnostik sein. Eine Voraussetzung hierfür ist die Entwicklung einer exakten und sehr stabilen Bewegungskorrektur in weiterführenden Studien. Durch den Wechsel zu einer höheren Magnetfeldstärke von 3 T und den sich daraus ergebenden Vorteilen kann das Potential der MR-Perfusionsbildgebung, insbesondere der Bestimmung quantitativer Perfusionswerte, im Bereich der nichtinvasiven KHK-Diagnostik zukünftig weiter gesteigert werden. / Absolute Quantification of Myocardial Perfusion Using High-Resolution MRI at 3 T
10

MR-gestützte Lokalisation der dominanten intraprostatischen Läsion und Dosisanalyse im Rahmen der volumenmodulierten Radiotherapieplanung des Prostatakarzinoms / MRI-guided localization of the dominant intraprostatic lesion and dose analysis in the context of volumetric modulated arc therapy planning for prostate cancer

Zenk, Maria January 2021 (has links) (PDF)
Die primäre Bestrahlung stellt eine kurative Therapieoption des lokalen Prostatakarzinoms dar. In den meisten Fällen weist das Prostatakarzinom Multifokalität auf. Studien zeigen, dass die dominante intraprostatische Läsion (DIL), oder Indexläsion, bedeutend für das Progressionsrisiko ist. Der Einbezug einer MRT-Bildgebung in das Management des Prostatakarzinoms ermöglicht hierbei eine überlegene Gewebebeurteilung. In dieser retrospektiven Arbeit wurden 54 Patientenfälle inkludiert, die im Zeitraum 03/2015 bis 03/2017 eine primäre, kurative Bestrahlung eines Prostatakarzinoms am Uniklinikum Würzburg erhalten haben. Es wurde evaluiert, ob im prätherapeutischen Bestrahlungsplanungs-MRT die Identifikation und Konturierung einer DIL möglich ist. In einem weiteren Schritt wurde die Dosisabdeckung der DIL im Bestrahlungsplan analysiert. Zudem wurden die MRT-Befunde mit den histopathologischen Stanzbiopsiebefunden bezüglich der Tumordetektion verglichen und auf Übereinstimmung geprüft. / Primary radiation therapy is a curative treatment option for localized prostate cancer. In most cases, prostate cancer is multifocal. Studies have shown that the dominant intraprostatic lesion (DIL), or index lesion, is relevant for the risk of progression. The inclusion of MR imaging in the management of prostate cancer provides superior soft tissue assessment in this regard. In this retrospective study 54 patient cases were included. All patients had undergone primary radiation therapy for prostate cancer at the University Hospital of Würzburg over a time span ranging from 03/2015 to 03/2017. It was evaluated whether the identification and delineation of the DIL in the pretherapeutic treatment planning MRI is possible. Subsequently dose distribution of the DIL was analysed in the treatment plans. In addition, the MRI findings were compared to the histopathologic punch biopsy findings with respect to tumor detection and examined for concordance.

Page generated in 0.6494 seconds