The error statistical account provides a basic account of evidence and inference. Formally, the approach is a re-interpretation of standard frequentist (Fisherian, Neyman-Pearson) statistics. Informally, it gives an account of inductive inference based on arguing from error, an analog of frequentist statistics, which keeps the concept of error probabilities central to the evaluation of inferences and evidence. Error statistical work at present tends to remain distinct from other approaches of naturalism and social epistemology in philosophy of science and, more generally, Science and Technology Studies (STS). My goal is to employ the error statistical program in order to address a number of problems to approaches in philosophy of science, which fall under two broad headings: (1) naturalistic philosophy of science and (2) social epistemology. The naturalistic approaches that I am interested in looking at seek to provide us with an account of scientific and meta-scientific methodologies that will avoid extreme skepticism, relativism and subjectivity and claim to teach us something about scientific inferences and evidence produced by experiments (broadly construed). I argue that these accounts fail to identify a satisfactory program for achieving those goals and; moreover, to the extent that they succeed it is by latching on to the more general principles and arguments from error statistics. In sum, I will apply the basic ideas from error statistics and use them to examine (and improve upon) an area to which they have not yet been applied, namely in assessing and pushing forward these interdisciplinary pursuits involving naturalistic philosophies of science that appeal to cognitive science, psychology, the scientific record and a variety of social epistemologies. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/28329 |
Date | 19 August 2011 |
Creators | Miller, Jean Anne |
Contributors | Science and Technology Studies, Mayo, Deborah G., Burian, Richard M., Fuhrman, Ellsworth R., Spanos, Aris |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Miller_JA_D_2008.pdf |
Page generated in 0.0028 seconds