La séparation CO2/N2 et H2/CO2 permet de limiter le rejet de CO2 dans l’atmosphère issu des gaz industriels et les membranes présentent de nombreux avantages tant sur le plan économique que pratique. Les membranes polymère sont faciles à mettre en forme mais un compromis entre perméabilité et sélectivité doit généralement être trouvé : pour améliorer les performances, des membranes à matrice mixte (MMM) incorporant des MOFs (matériaux hybrides poreux cristallisés) dispersés dans la phase polymère ont été proposées. A la différence des matériaux poreux inorganiques, les MOFs ont une meilleure compatibilité avec la matrice polymère du fait de leur caractère hybride organiqueinorganique. Dans le cadre de cette thèse, des polycarboxylates de Fe3+ et Al3+ poreux, stables à l’eau, et possédant de bonnes propriétés d’adsorption sélective du CO2 ont été synthétisés en milieu aqueux et mis à l’échelle de quelques grammes. Deux nouveaux polycarboxylates de Fe3+ poreux fonctionnalisés par des fonctions -COOH libres ont été obtenus à température ambiante. Pour l’un d’entre eux, la structure a été déterminée par diffraction des rayons X. Une deuxième partie de la thèse a été consacrée à la synthèse de nanoparticules de MOFs avec un bon rendement. Une partie importante de ce travail a porté sur le contrôle de la taille et la morphologie des nanoparticules de MIL-96(Al). Ce travail a conduit à la préparation de MMMs à base de MIL-96(Al) dont les performances sont supérieures à la membrane pure polymère pour la séparation CO2/N2. La dernière partie de ce travail de thèse a porté sur l’étude physico-chimique de la compatibilité entre le ZIF-8 et deux polymères (PVA et PIM-1). Ce travail a consisté à effectuer une caractérisation complète de solutions colloïdales MOFs/polymère en couplant plusieurs techniques (DLS, TEM, SAXS). Cette étude a montré que la compatibilité MOF/polymère est très dépendante de la chimie de surface des MOFs et des propriétés physico-chimiques du polymère (rigidité, caractère hydrophile/hydrophobe…). / CO2 capture and storage (CCS) is of high economical and societal interest. CO2/N2 andH2/CO2 separations are able to limit atmospheric CO2 emissions produced by industrial exhausts andmembranes present numerous economical and practical advantages. Polymer membranes are easy toprocess and possess interesting mechanical properties. However, there is a trade-off to make betweenpermeability and selectivity. Mixed-matrix membranes (MMM) based on MOFs (porous crystallinehybrid materials) have been proposed to boost the performances of polymer membranes for CO2capture. In comparison to other inorganic porous materials, one may expect that the compatibilitybetween MOFs and polymers is enhanced due to the hybrid character of MOFs.In this work, porous water stable polycarboxylate MOFs based on Fe3+ and Al3+ with promisingproperties for CO2 adsorption were synthesized for large-scale production using water as the mainsolvent. Two new porous polycarboxylate Fe3+ MOF bearing free -COOH groups in the frameworkwere obtained at room temperature as nanoparticles. The crystallographic structure of one of thesematerials was determined by single crystal X-ray diffraction. A second part of the thesis was devotedto the synthesis of MOFs nanoparticles with good yield. We focused our attention on the control of thediameter and morphology of MIL-96(Al) nanoparticles. This study led to the preparation of MMMsbased on MIL-96(Al) with promising properties for CO2/N2 separation. Finally, the compatibilitybetween MOF particles and polymers was studied for two systems (ZIF-8/PIM-1 and ZIF-8/PVOH),showing the influence of the surface chemistry of MOFs and the physico-chemical properties ofpolymer on the matching between MOFs and polymers.
Identifer | oai:union.ndltd.org:theses.fr/2017SACLV075 |
Date | 24 November 2017 |
Creators | Benzaqui, Marvin |
Contributors | Université Paris-Saclay (ComUE), Steunou, Nathalie, Serre, Christian |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds