In dieser Dissertation wird erstmalig ein theoretisches Fundament zur Beschneiung virtueller Szenen entwickelt. Das theoretische Fundament wird als analytisches Modell in Form einer Diffusionsgleichung formuliert. Aus dem analytischen Modell lässt sich eine Gruppe von Algorithmen zur Beschneiung virtueller Szenen ableiten.
Eingehende Voruntersuchungen zur allgemeinen Modellierung natürlicher Phänomene in der Computergraphik sowie eine Klassifikation der bestehenden Literatur über mathematische Schneemodellierung bilden den Anfang der Arbeit. Aus der umfassenden Darstellung der Eigenschaften von Schnee, wie er in der Natur vorkommt, ergeben sich die Grundlagen für die Modellbildung. Die Modellbildung fußt auf den grundlegenden Ansätzen der klassischen Mechanik und der statistischen Physik. Für die Beschneiung auf visueller Skala erweist sich der Diffusionsprozess als geeignete Beschreibung. Mit der Beschreibung lassen sich diffusiv Schneeoberflächen erzeugen. Der konkrete computergraphische Wert des theoretischen Fundaments wird anhand zweier Implementierungen exemplarisch dargestellt, und zwar in der Distanzfeldmethode und der Diffusionskernmethode. Die Ergebnisse werden mithilfe dreidimensionaler Rauschtexturen und Alpha-Masken an den Rändern fotorealistisch visualisiert. / In this dissertation for the first time a theoretical foundation is developed for snow accumulation in virtual scenes. The theoretical foundation is formulated in an analytical model as diffusion equation. The analytical model leads to a group of algorithms for virtual snow accumulation.
Comprehensive investigations for the modelling of natural phenomena in computer graphics in general are used to develop a method classification scheme. Another classification is given for an overview over the aspects of snow in the real world. This allows an efficient presentation of related literature on snow modelling. A new approach of snow modelling is then drawn from first principles of classical mechanics and statistical physics. Diffusion processes provide an efficient theoretical framework for snow accumulation. The mathematical structure of diffusion equations is discussed and demonstrated to be adequate to snow modelling in visual scales. The value of the theoretical foundation for computer graphics is demonstrated with two exemplary implementations, a distance field method and the diffusion kernel method. Results are visualized with 3D noise textures and alpha masks near borders delivering photorealistic snow pictures.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-62222 |
Date | 18 November 2010 |
Creators | v. Festenberg, Niels |
Contributors | Technische Universität Dresden, Fakultät Informatik, Prof. Dr. Stefan Gumhold, Prof. Dr. Stefan Gumhold, Prof. Dr. Oliver Deussen |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0022 seconds