<p>Today’s electrical transmission & distribution systems, are facing a number of challenges related to changing environmental, technical and business factors. Among these factors are, increased environmental restrictions leading to higher share of production from renewable and uncontrollable sources as well as local environmental concerns regarding construction of new transmission and distribution lines. The re-regulation of the electricity market has created a dynamic environment in which multiple organizations have to coordinate and cooperate in the operation and control of the power system. Finally, the high rate of devel-opment within the ICT field is creating many new opportunities for power system opera-tion and control, thanks to introduction of new technologies for measurement, communi-cation and automation.</p><p>As a result of these factors, Wide Area Monitoring and Control (WAMC) systems have been proposed. WAMC systems utilize new ICT based technologies to offer more accurate and timely data on the state of the power system. WAMC systems utilize Phasor Measure-ment Units (PMUs) that have higher data rates and are time synchronised using, GPS satel-lites. This allows synchronized observation of the dynamics of the power system, making it possible to manage the system at a more efficient and responsive level and apply wide area control and protection schemes. The success WAMC systems, on the other hand, are largely dependent on the performance of the Information and Communication Technology (ICT) infrastructure that would support them.</p><p>This thesis investigates the requirements on, and suitability of the ICT systems that support WAMC systems. This was done by identifying WAMC applications and the elicitation of their requirements. Furthermore, a set of simulation projects were carried out to determine the communication system characteristics such as delay and the impact of this delay on the WAMC system.</p><p>This thesis has several contributions. First, it provides summary and analysis of WAMC application priorities and requirements in the Nordic region. Secondly it provides simula-tion based comparison and evaluation of communication paradigms for WAMC systems. The research documented in this thesis addresses these paradigms by providing a compari-son and evaluation through simulation. Thirdly, the thesis provides insight to the possible sources of delay in WAMC architecture and the impact of these delays on data quality specifically data incompleteness. This provides insight on what applications are important to practitioners and what is the expected performance of these applications, as seen from the power system control and operation point of view.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-11316 |
Date | January 2009 |
Creators | Chenine, Moustafa |
Publisher | KTH, Industrial Information and Control Systems |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, monograph, text |
Relation | Trita-EE, 1653-5146 ; 2009:045 |
Page generated in 0.002 seconds