On s'intéresse dans cette thèse à l'étude théorique et numérique des équations différentielles stochastiques multivoques et leurs applications à la modélisation de structures mécaniques sous sollicitations aléatoires. Les équations différentielles stochastiques considérées comportent dans le terme de dérive un opérateur multivoque maximal monotone pour lesquelles l'existence et l'unicité de solutions ont déjà été obtenues dans un cadre euclidien. Pour de telles équations on montre la convergence d'un schéma numérique, faisant intervenir grâce à la maximalité et à la monotonie des opérateurs considérés, des applications exclusivement univoques, rendant son implémentation aisée. Un ordre de convergence est de plus obtenu sous certaines conditions sur le coefficient de diffusion. Pour enrichir la modélisation, on envisage des équations différentielles stochastiques multivoques d'ordre 2 évoluant sur une variété riemanienne pour lesquelles ont été obtenues l'existence et l'unicité d'une solution. Des simulations numériques sur des modèles d'association en série ou en parallèle de ressorts, amortisseurs et patins (ou éléments de Saint-Venant), dont la formalisation mathématique fait intervenir des équations différentielles stochastiques multivoques, ont permis de valider des méthodes d'identification de paramètres à partir de cycles d'hystérésis.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008778 |
Date | 06 December 2004 |
Creators | BERNARDIN, Frédéric |
Publisher | Université Claude Bernard - Lyon I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0011 seconds