Return to search

Étude multi-échelle de modèles probabilistes pour les systèmes excitables avec composante spatiale.

L'objet de cette thèse est l'étude mathématique de modèles probabilistes pour la génération et la propagation d'un potentiel d'action dans les neurones et plus généralement de modèles aléatoires pour les systèmes excitables. En effet, nous souhaitons étudier l'influence du bruit sur certains systèmes excitables multi-échelles possédant une composante spatiale, que ce soit le bruit contenu intrinsèquement dans le système ou le bruit provenant du milieu. Ci-dessous, nous décrivons d'abord le contenu mathématique de la thèse. Nous abordons ensuite la situation physiologique décrite par les modèles que nous considérons. Pour étudier le bruit intrinsèque, nous considérons des processus de Markov déterministes par morceaux à valeurs dans des espaces de Hilbert ("Hilbert-valued PDMP"). Nous nous sommes intéressés à l'aspect multi-échelles de ces processus et à leur comportement en temps long. Dans un premier temps, nous étudions le cas où la composante rapide est une composante discrète du PDMP. Nous démontrons un théorème limite lorsque la composante rapide est infiniment accélérée. Ainsi, nous obtenons la convergence d'une classe de "Hilbert-valued PDMP" contenant plusieurs échelles de temps vers des modèles dits moyennés qui sont, dans certains cas, aussi des PDMP. Nous étudions ensuite les fluctuations du modèle multi-échelles autour du modèle moyenné en montrant que celles-ci sont gaussiennes à travers la preuve d'un théorème de type "central limit". Dans un deuxième temps, nous abordons le cas où la composante rapide est elle-même un PDMP. Cela requiert de connaître la mesure invariante d'un PDMP à valeurs dans un espace de Hilbert. Nous montrons, sous certaines conditions, qu'il existe une unique mesure invariante et la convergence exponentielle du processus vers cette mesure. Pour des PDMP dits diagonaux, la mesure invariante est explicitée. Ces résultats nous permettent d'obtenir un théorème de moyennisation pour des PDMP "rapides" couplés à des chaînes de Markov à temps continu "lentes". Pour étudier le bruit externe, nous considérons des systèmes d'équations aux dérivées partielles stochastiques (EDPS) conduites par des bruits colorés. Sur des domaines bornés de $\mathbb{R}^2$ ou $\mathbb{R}^3$, nous menons l'analyse numérique d'un schéma de type différences finies en temps et éléments finis en espace. Pour une classe d'EDPS linéaires, nous étudions l'erreur de convergence forte de notre schéma. Nous prouvons que l'ordre de convergence forte est deux fois moindre que l'ordre de convergence faible. Par des simulations, nous montrons l'émergence de phénomènes d'ondes ré-entrantes dues à la présence du bruit dans des domaines de dimension deux pour les modèles de Barkley et Mitchell-Schaeffer.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00905886
Date04 November 2013
CreatorsGenadot, Alexandre
PublisherUniversité Pierre et Marie Curie - Paris VI
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds