Return to search

Indépendance de l pour certains systèmes motiviques de représentations galoisiennes.

Soit $X$ une variété algébrique lisse et projectif sur un corps de nombres $F \subset \mathbb{C}$. On suppose que le motif de Hodge absolu $h^i(X)$ appartient à la catégorie Tannakienne engendrée par les motifs des variétés abélienne sur $F$. Pour tout nombre premier $\ell$, le groupe de Galois $\Gamma_F:= Gal(\bar{F}/F)$ opère sur $H_{\ell}(M)$, la réalisation $\ell$-adique de $M$. Quitte à remplacer $F$ par une extension finie, on peut supposer que cette action se factorise par un morphisme $\rho_{M,\ell}: \Gamma_F\rightarrow G_M(\ql)$, où $G_M$ est le groupe de Mumford-Tate de $M$. Fixons une valuation $v$ de $F$ et supposons $v(\ell)=0 $. La restriction $\rho_{M,\ell} \vert_{ \Gamma_{F_v}}$ définit une représentation ${}'W_v \rightarrow G_{M/\ql}$ du groupe de Weil-Deligne de $F_v$. Des conjectures de J-P Serre et J-M Fontaine indiquent que pour tout $\ell $, la représentation ${}'W_v \rightarrow G_{M/\ql}$ est définie sur $\mathbb{Q}$ et pour $\ell$ variable elles forment un système compatible de représentations. Sous certaines hypothèses supplémentaires, nous montrons que ceci est vrai si $X$ a bonne réduction en $v$ où réduction semi-stable en $v$.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00644861
Date08 December 2011
CreatorsLaskar, Abhijit
PublisherUniversité de Strasbourg
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0019 seconds