Spelling suggestions: "subject:"groupe dde raumformate"" "subject:"groupe dde mumfordova""
1 |
Periodes et groupes de Mumford-Tate des 1-motifsBertolin, Cristiana 31 October 2000 (has links) (PDF)
Dans la première partie de cette thèse, on étudie la structure et les dégénérescences du groupe de Mumford-Tate d'un 1-motif $M$ défini sur $\CC$, $MT(M)$. Ce groupe est un $\QQ\,$-groupe algébrique qui agit sur la réalisation de Hodge de $M$ et qui est muni d'une filtration croissante $W_\bullet$. On prouve que le radical unipotent de $MT(M)$, qui est $W_{-1}(MT(M)),$ s'injecte dans un groupe de Heisenberg ``généralisé''. Ensuite on explique comment se réduire à l'étude du groupe de Mumford-Tate d'une somme directe de 1-motifs dont le groupe des caractères du tore et dont le réseau sont de rang 1. Puis on classifie et on étudie les dégénérescences de $MT(M)$, i.e. les phénomènes qui causent la chute de la dimension de $MT(M)$. Dans la deuxième partie, on propose une conjecture de transcendence, qu'on appelle {\it conjecture elliptico-torique} (CET), et notre résultat principal est que (CET) {\it est équivalente à ${\rm (CPG)}_K$, appliquée aux 1-motifs de la forme $M=[ {\Bbb Z}^{r} \, {\buildrel u \over \longrightarrow} \,\prod^n_{j=1} {\cal E}_j \times {\GG}_m^s]$, où les ${\cal E}_j$ sont des courbes elliptiques deux à deux non isogènes}. Notre conjecture (CET) implique des conjectures de transcendance ``classiques'', parmis lesquelles les plus fameuses sont les suivantes~: la conjecture de Schanuel, l'analogue elliptique de la conjecture de Schanuel, une conjecture modulaire qui généralise un théorème de Y. Nesterenko, ... Mais à partir de (CET), on peut aussi construire d'autres conjectures de transcendance, qui, à ma connaissance, ne se trouvent pas dans la littérature. Chacune de ces conjectures, qui peuvent se déduire de (CET), est équivalente à ${\rm (CPG)}_K$ appliquée à un 1-motif bien choisi~: par exemple, la conjecture de Schanuel est équivalentes à ${\rm (CPG)}_K$ appliquée à des 1-motifs de la forme $M=[ {\Bbb Z}^{r} \, {\buildrel u \over \longrightarrow} \, {\GG}_m^s]$.
|
2 |
Indépendance de l pour certains systèmes motiviques de représentations galoisiennes.Laskar, Abhijit 08 December 2011 (has links) (PDF)
Soit $X$ une variété algébrique lisse et projectif sur un corps de nombres $F \subset \mathbb{C}$. On suppose que le motif de Hodge absolu $h^i(X)$ appartient à la catégorie Tannakienne engendrée par les motifs des variétés abélienne sur $F$. Pour tout nombre premier $\ell$, le groupe de Galois $\Gamma_F:= Gal(\bar{F}/F)$ opère sur $H_{\ell}(M)$, la réalisation $\ell$-adique de $M$. Quitte à remplacer $F$ par une extension finie, on peut supposer que cette action se factorise par un morphisme $\rho_{M,\ell}: \Gamma_F\rightarrow G_M(\ql)$, où $G_M$ est le groupe de Mumford-Tate de $M$. Fixons une valuation $v$ de $F$ et supposons $v(\ell)=0 $. La restriction $\rho_{M,\ell} \vert_{ \Gamma_{F_v}}$ définit une représentation ${}'W_v \rightarrow G_{M/\ql}$ du groupe de Weil-Deligne de $F_v$. Des conjectures de J-P Serre et J-M Fontaine indiquent que pour tout $\ell $, la représentation ${}'W_v \rightarrow G_{M/\ql}$ est définie sur $\mathbb{Q}$ et pour $\ell$ variable elles forment un système compatible de représentations. Sous certaines hypothèses supplémentaires, nous montrons que ceci est vrai si $X$ a bonne réduction en $v$ où réduction semi-stable en $v$.
|
Page generated in 0.0592 seconds