• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Periodes et groupes de Mumford-Tate des 1-motifs

Bertolin, Cristiana 31 October 2000 (has links) (PDF)
Dans la première partie de cette thèse, on étudie la structure et les dégénérescences du groupe de Mumford-Tate d'un 1-motif $M$ défini sur $\CC$, $MT(M)$. Ce groupe est un $\QQ\,$-groupe algébrique qui agit sur la réalisation de Hodge de $M$ et qui est muni d'une filtration croissante $W_\bullet$. On prouve que le radical unipotent de $MT(M)$, qui est $W_{-1}(MT(M)),$ s'injecte dans un groupe de Heisenberg ``généralisé''. Ensuite on explique comment se réduire à l'étude du groupe de Mumford-Tate d'une somme directe de 1-motifs dont le groupe des caractères du tore et dont le réseau sont de rang 1. Puis on classifie et on étudie les dégénérescences de $MT(M)$, i.e. les phénomènes qui causent la chute de la dimension de $MT(M)$. Dans la deuxième partie, on propose une conjecture de transcendence, qu'on appelle {\it conjecture elliptico-torique} (CET), et notre résultat principal est que (CET) {\it est équivalente à ${\rm (CPG)}_K$, appliquée aux 1-motifs de la forme $M=[ {\Bbb Z}^{r} \, {\buildrel u \over \longrightarrow} \,\prod^n_{j=1} {\cal E}_j \times {\GG}_m^s]$, où les ${\cal E}_j$ sont des courbes elliptiques deux à deux non isogènes}. Notre conjecture (CET) implique des conjectures de transcendance ``classiques'', parmis lesquelles les plus fameuses sont les suivantes~: la conjecture de Schanuel, l'analogue elliptique de la conjecture de Schanuel, une conjecture modulaire qui généralise un théorème de Y. Nesterenko, ... Mais à partir de (CET), on peut aussi construire d'autres conjectures de transcendance, qui, à ma connaissance, ne se trouvent pas dans la littérature. Chacune de ces conjectures, qui peuvent se déduire de (CET), est équivalente à ${\rm (CPG)}_K$ appliquée à un 1-motif bien choisi~: par exemple, la conjecture de Schanuel est équivalentes à ${\rm (CPG)}_K$ appliquée à des 1-motifs de la forme $M=[ {\Bbb Z}^{r} \, {\buildrel u \over \longrightarrow} \, {\GG}_m^s]$.

Page generated in 0.1012 seconds