Dans cette thèse, nous nous intéressons à des problèmes de segmentation d'images sous contraintes géométriques. Cette problématique a émergé suite à l'analyse de plusieurs méthodes classiques de détection de contours qui a été faite. En effet, ces méthodes classiques (Modèles déformables, contours actifs géodésiques, 'fast marching', etc...) se révèlent caduques quand des données de l'image sont manquantes ou de mauvaise qualité. En imagerie médicale par exemple, des phénomènes d'occlusion peuvent se produire : des organes peuvent se masquer en partie l'un l'autre (ex du foie). Par ailleurs, deux objets qui se jouxtent peuvent posséder des textures intrinsèques homogènes si bien qu'il est difficile d'identifier clairement l'interface entre ces deux objets. La définition classique d'un contour qui est caractérisé comme étant le lieu des points connexes présentant une forte transition de luminosité ne s'applique donc plus. Enfin, dans certains contextes d'étude, comme en géophysique, on peut disposer en plus des doneées d'imagerie, de données géométriques à intégrer au processus de segmentation.<br /><br />Pour pallier ces difficultés, nous proposons ici des modèles de segmentation intégrant des contraintes géométriques et satisfaisant les critères classiques de détection avec en particulier la régularité sur le contour que cela implique.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00009036 |
Date | 09 December 2004 |
Creators | Le Guyader, Carole |
Publisher | INSA de Rouen |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0023 seconds