1 |
Contributions aux méthodes variationnelles pour le calcul du flot optique: prise en compte des informations spatiales et temporellesBéréziat, Dominique 24 November 2010 (has links) (PDF)
Dans ces travaux nous nous intéressons aux formulations variationnelles pour résoudre des problèmes mal posés du traitement d'images. Nous nous focalisons principalement sur le calcul du flot optique dans les séquences d'images ainsi que la reconstruction 3D à partir d'une séquence d'images 2D. Comme ces problèmes sont mal posés au sens où ils sont sous-contraints, on utilise souvent des techniques de régularisation spatiale pour obtenir l'unicité de la solution. Nous nous proposons d'introduire d'autres contraintes dans la formulation du problème pour limiter l'importance de cette régularisation, voire pour la supprimer complètement. Ces contraintes sont dérivées des informations a priori sur les conditions expérimentales. Dans un premier chapitre, nous examinons un cas d'étude tiré de l'imagerie biologique: il s'agit d'acquisitions multi-focales de vésicules géantes, nous en exploitons alors la topologie sphérique pour divers problèmes tels que le suivi, la segmentation, l'estimation du flot optique et la reconstruction 3D. Ces contraintes sont donc d'ordre spatiales. Dans un second chapitre, nous étudions la possibilité de tirer partie de l'information temporelle présente dans les séquences d'images. Cette information est alors modélisée par une équation d'évolution. La difficulté à lever est de résoudre conjointement cette équation et les contraintes qui dérivent du problème de traitement d'images. Nous utilisons alors le formalisme de l'assimilation variationnelle de données dans une formulation dite ''faible'' car nous attribuons une erreur sur l'équation d'évolution. Bien que l'équation d'évolution décrive imparfaitement la dynamique, nous montrons que l'on peut résoudre le problème mal posé de l'estimation du flot optique sans recourir à la régularisation. Nous montrons également que lorsque les informations sont manquantes, il est possible de fournir une estimation réaliste du flot optique, ceci permet de gérer les cas difficiles d'occultations. Enfin, dans un dernier chapitre, nous résumons des travaux parallèles portant sur la résolution variationnelle de problèmes non linéaires de traitement d'images, des travaux sur l'occupation des sols en imagerie satellitaire haute définition et enfin sur le suivi multi-cibles.
|
2 |
Etudes numériques du spectre d'un opérateur de Schrödinger avec champ magnétique constant.Janane, Rahhal 27 October 2005 (has links) (PDF)
Cette thèse comporte quatre parties. Les deux premières parties concernent le calcul de la première valeur propre de familles d'opérateurs de Neumann en utilisant d'abord une méthode basée sur les différences finies, puis une approximation par une méthode d'éléments finis sans quadrature numérique. Pour le calcul numérique de la plus petite valeur propre, la méthode de la puissance inverse a été implémentée avec factorisation LU de la matrice considérée pour la résolution des systèmes linéaires utilisés.<br />La troisième partie porte sur un problème de valeurs propres faisant intervenir un opérateur de Schrödinger avec champ magnétique constant issu de la théorie de Ginzburg-Landau et concernant la supraconductivité de certains matériaux. Pour la résolution numérique, une méthode basée sur les éléments finis avec intégration numérique est utilisée. Dans cette partie, une évaluation de la partie basse du spectre de la réalisation de Neumann est obtenue. Ensuite, l'existence des solutions du problème variationnel spectral a été établie. L'étude de la convergence et l'estimation des erreurs pour les paires propres approchées avec quadrature numérique dans le cas où les fonctions propres sont vectorielles, sont semblables à celles obtenues dans le cas où les fonctions propres sont réelles. Dans l'étude de ces estimations, la distinction est faite entre le cas d'une valeur propre exacte simple et le cas d'une valeur propre exacte multiple. La quatrième partie porte sur la mise en œuvre de la résolution numérique du problème précédent.
|
3 |
Recherche de méthode simplifiée pour le calcul de poutres multicouches en grandes transformations planesLagarde, Laurent 14 December 2000 (has links) (PDF)
ETUDE DU COMPORTEMENT D'UNE STRUCTURE MULTICOUCHES EN PETITES PERTURBATIONS, ICI LA POUTRE MULTICOUCHES : IL S'AGIT D'EN PROPOSER LA CONSTRUCTION D'UN MODELE SIMPLIFIE REPOSANT SUR UNE METHODE SYSTEMATIQUE, ET DE PROFITER DES HYPOTHESES SIMPLIFICATRICES REALISEES POUR FORCER LE MODELE A RESTITUER DES INFORMATIONS SUR LES PHENOMENES D'INTERFACES - DANS LA 1ERE PARTIE, LE 1ER CHAPITRE EXPOSE LE POINT DE DEPART, LA MODELISATION MULTIPARTICULAIRE - LE 2D PRESENTE 2 PRINCIPES VARIATIONNELS MIXTES UTILISANT CHACUN UN JEU PROPRE DE VARIABLES INDEPENDANTES DUALES CONTRAINTES-DEFORMATIONS - LE 3EME PRESENTE UNE ETUDE LAGRANGIENNE DE POUTRES DANS LAQUELLE DES CONCEPTS D'EFFORTS GENERALISES CLASSIQUEMENT DEFINIS EN RESISTANCE DES MATERIAUX SONT REECRITS DANS LE CAS DES GRANDES TRANSFORMATIONS SUR LA CONFIGURATION DE REFERENCE - LA 2DE PARTIE EST CONSACREE A LA CONSTRUCTION DU MODELE : PRESENTATION DES HYPOTHESES, EN PARTICULIER DU CHOIX DU PRINCIPE VARIATIONNEL MIXTE QUI SERA UTILISE AINSI QUE DE LA NATURE DES APPROXIMATIONS QUI SERONT INTRODUITES DANS CE PRINCIPE.
|
4 |
Marche aléatoire auto-évitante en auto-interactionNguyen, Gia Bao 17 October 2013 (has links) (PDF)
Dans cette thèse nous étudions le phénomène d'effondrement de différents modèles d'homopolymères. Nous étudions une marche aléatoire partiellement dirigée en dimension 1+1, auto-évitante et en auto-interaction, connue sous l'acronyme anglais IPDSAW. Il est établi que le modèle IPDSAW a une transition de phase d'effondrement en un paramètre critique $\beta_c$. Pour étudier la fonction de partition de ce modèle, nous développons une nouvelle méthode qui nous permet d'en déduire une formule variationnelle pour son énergie libre. Cette formule variationnelle peut être utilisée pour prouver l'existence de la transition d'effondrement et pour identifier simplement le point critique. Nous donnons une asymptotique précise de l'énergie libre au voisinage du point critique. Ensuite, nous établissons plusieurs propriétés trajectorielles de notre marche aléatoire à l'intérieur de la phase effondrée ($\beta>\beta_c$). Finalement, nous étudions le modèle IPDSAW soumis à une force extérieure. Nous montrons comment détecter la présence d'un phénomène de ré-entrance sans toutefois résoudre intégralement le modèle.
|
5 |
Effets de la viscosité et de la capillarité sur les vibrations linéaires d'une structure élastique contenant un liquide incompressible.Miras, Thomas 03 July 2013 (has links) (PDF)
Ce travail de recherche traite du couplage entre un liquide incompressible, irrotationnel et son contenant : une structure élastique. Cette interaction fluide-structure est traitée dans le cadre des petites déformations autour d'un état d'équilibre.Dans un premier temps, on présente une méthode d'introduction des sources dissipatives visqueuses dans le liquide à partir des équations du système couplé conservatif en s'appuyant sur une approche de type fluide potentiel généralement utilisée pour traiter les problèmes de couplage fluide-structure linéarisés non amortis. Un modèle d'amortissement diagonal est alors choisi pour le liquide et les effets dissipatifs de celui-ci sont pris en compte en calculant les coefficients d'amortissement modaux. Seuls les effets dissipatifs liées à la viscosité du liquide sont alors pris en compte. Le système couplé dissipatif obtenu possède une matrice d'amortissement non symétrique. Une résolution de ce système à amortissement non classique est alors présentée et les expressions des réponses fréquentielle et temporelle linéarisées sont données pour différents types d'excitations.Dans un deuxième temps, le liquide est supposé non visqueux et les forces de tension surfacique sont prises en compte. Cette configuration concerne principalement les satellites où le système couplé est en situation de microgravité. Une formulation du problème conservatif permettant de prendre en compte l'incompressibilité du fluide, la condition de continuité à l'interface fluide structure, les effets de capillarité du fluide ainsi que les effets éventuels de précontraintes statiques est alors établie. On se propose pour cela d'utiliser une méthode énergétique via le Principe de Moindre Action. La démarche est alors décomposée en deux étapes : une étude statique afin de déterminer la position de référence, puis une étude dynamique linéarisée autour de cette position d'équilibre. Cette formulation forme notamment une base pour l'introduction des sources dissipatives liées aux effets de capillarité via la méthode précédemment introduite.
|
6 |
Contribution au développement de stratégies algorithmiques pour la résolution de problèmes thermo-mécaniques couplés par une approche énergétique variationnelleBouery, Charbel 12 December 2012 (has links) (PDF)
Les sources de couplage thermomécanique dans les matériaux viscoélastiques sont multiples : thermo-élasticité, dissipation visqueuse, évolution des caractéristiques mécaniques avec la température. La simulation numérique de ces couplages en calcul des structures présente encore un certain nombre de défis, spécialement lorsque les effets de couplage sont très marqués (couplage fort). De nombreuses approches algorithmiques ont été proposées dans la littérature pour ce type de problème. Ces méthodes vont des approches monolithiques, traitant simultanément l'équilibre mécanique et l'équilibre thermique, aux approches étagées, traitant alternativement chacun des sous-problèmes mécanique et thermique. La difficulté est d'obtenir un bon compromis entre les aspects de précision, stabilité numérique et coût de calcul. Récemment, une approche variationnelle des problèmes couplés a été proposée par Yang et al. (2006), qui permet d'écrire les équations d'équilibre mécanique et thermique sous la forme d'un problème d'optimisation d'une fonctionnelle scalaire. Cette approche variationnelle présente notamment les avantages de conduire à une formulation numérique à structure symétrique, et de permettre l'utilisation d'algorithmes d'optimisation. Dans ce travail on utilise l'approche variationnelle pour résoudre le problème thermo-visco-élastique fortement couplé, puis on compare plusieurs schémas algorithmiques afin de trouver celui qui présente les meilleures performances.
|
7 |
Analyse numérique de modèles de diffusion-sauts à volatilité stochastique : cas de l'évaluation des options / Numerical analysis of the stochastic volatility jump diffusion models : case of options pricingJraifi, Abdelilah 03 February 2014 (has links)
Dans le monde économique, les contrats d'options sont très utilisés car ils permettent de se couvrir contre les aléas et les risques dus aux fluctuations des prix des actifs sous-jacents. La détermination du prix de ces contrats est d'une grande importance pour les investisseurs.Dans cette thèse, on s'intéresse aux problèmes d'évaluation des options, en particulier les options Européennes et Quanto sur un actif financier dont le prix est modélisé en multi dimensions par un modèle de diffusion-saut à volatilité stochastique avec sauts (1er cas considère la volatilité sans sauts, dans le 2ème cas les sauts sont pris en compte, finalement dans le 3ème cas, l'actif sous-jacent est sans saut et la volatilité suit un CEV modèle sans saut). Ce modèle permet de mieux prendre en compte certains phénomènes observés dans les marchés. Nous développons des méthodes numériques qui déterminent les valeurs des prix de ces options. On présentera d'abord le modèle qui s'écrit sous la forme d'un système d'équations intégro-différentielles stochastiques "EIDS", et on étudiera l'existence et l'unicité de la solution de ce modèle en fonction de ses coefficients, puis on établira le lien entre le calcul du prix de l'option et la résolution de l'équation Intégro-différentielle partielle (EIDP). Ce lien, qui est basé sur la notion des générateurs infinitésimaux, nous permet d'utiliser différentes méthodes numériques pour l'évaluation des options considérées. Nous introduisons alors l'équation variationnelle associée aux EIDP et démontrons qu'elle admet une unique solution dans un espace de Sobolev avec poids en s'inspirant des travaux de Zhang [106].Nous nous concentrons ensuite sur l'approximation numérique du prix de l'option en considérant le problème dans un domaine borné, et nous utilisons pour la résolution numérique la méthode des éléments finis de type (P1), et un schéma d'Euler-Maruyama, pour se servir, d'une part de la méthode de différences finies en temps, et d'autre part de la méthode de Monté Carlo et la méthode Quasi Monte Carlo. Pour cette dernière méthode nous avons utilisé les suites de Halton afin d'améliorer la vitesse de convergence.Nous présenterons une étude comparative des différents résultats numériques obtenus dans plusieurs cas différents afin d'étudier la performance et l'efficacité des méthodes utilisées. / In the modern economic world, the options contracts are used because they allow to hedge against the vagaries and risks refers to fluctuations in the prices of the underlying assets. The determination of the price of these contracts is of great importance for investors.We are interested in problems of options pricing, actually the European and Quanto options on a financial asset. The price of that asset is modeled by a multi-dimentional jump diffusion with stochastic volatility. Otherwise, the first model considers the volatility as a continuous process and the second model considers it as a jump process. Finally in the 3rd model, the underlying asset is without jump and volatility follows a model CEV without jump. This model allow better to take into account some phenomena observed in the markets. We develop numerical methods that determine the values of prices for these options. We first write the model as an integro-differential stochastic equations system "EIDS", of which we study existence and unicity of solutions. Then we relate the resolution of PIDE to the computation of the option value. This link, which is based on the notion of infinitesimal generators, allows us to use different numerical methods. We therefore introduce the variational equation associated with the PIDE, and drawing on the work of Zhang [106], we show that it admits a unique solution in a weights Sobolev space We focus on the numerical approximation of the price of the option, by treating the problem in a bounded domain. We use the finite elements method of type (P1), and the scheme of Euler-Maruyama, for this serve, on the one hand the finite differences method in time, and on the other hand the method of Monte Carlo and the Quasi Monte Carlo method. For this last method we use of Halton sequences to improve the speed of convergence.We present a comparative study of the different numerical results in many different cases in order to investigate the performance and effectiveness of the used methods.
|
8 |
Méthodes d'éléments finis pour le problème de changement de phase en milieux composites / Finite element methods for the phase change problem in composite mediaMint brahim, Maimouna 30 November 2016 (has links)
Dans ces travaux de thèse on s’intéresse au développement d’un outil numérique pour résoudre le problème de conduction instationnaire avec changement de phase dans un milieu composite constitué d’une mousse de graphite infiltrée par un matériau à changement de phase tel que le sel, dans le contexte du stockage de l’énergie thermique solaire.Au chapitre 1, on commence par présenter le modèle sur lequel on va travailler. Il estséparé en trois sous-parties : un problème de conduction de chaleur dans la mousse, un problème de changement de phase dans les pores remplis de sel et une condition de résistance thermique de contact entre les deux matériaux qui est traduite par une discontinuité du champ de température.Au chapitre 2, on étudie le problème stationnaire de conduction thermique dans un milieu composite avec résistance de contact. Ceci permet de se focaliser sur la plus grande difficulté présente dans le problème qui est le traitement de la condition de saut à l’interface.Deux méthodes d’éléments finis sont proposées pour résoudre ce problème : une méthode basée sur les éléments finis Lagrange P1 et une méthode hybride-duale utilisant les éléments finis Raviart-Thomas d’ordre 0 et P0. L’analyse numérique des deux méthodes est effectuée et les résultats de tests numériques attestent des efficacités des deux méthodes [10]. Les matériaux à changement de phase qu’on étudie dans le cadre de cette thèse sont des matériaux pures, par conséquent le changement de phase s’effectue en une valeur de température fixe qui est la température de fusion. Ceci est modélisé par un saut dans la fonction fraction liquide et par conséquent dans la fonction enthalpie du matériau. Cette discontinuité représente une difficulté numérique supplémentaire qu’on propose de surmonter en introduisant un intervalle de régularisation autour de la température de fusion.Cette procédure est présentée dans le chapitre 3 où une étude analytique et numérique montre que l’erreur sur la température se comporte comme " en dehors de la zone de mélange, où " est la largeur de l’intervalle de régularisation. Cependant, à l’intérieur l’erreur se comporte comme p " et on montre que cette estimation est optimale. Cette diminution de vitesse de convergence est due à l’énergie qui reste bloquée dans la zone de mélange [58].Dans le chapitre 4 on présente quatre des schémas les plus utilisés pour le traitement de la non-linearité due au changement de phase: mise à jour du terme source, linéarisation de l’enthalpie, la capacité thermique apparente et le schéma de Chernoff. Différents tests numériques sont réalisés afin de tester et comparer ces quatre méthodes pour différents types de problèmes. Les résultats montrent que le schéma de linéarisation de l’enthalpie est le plus précis à chaque pas de temps tans dis que le schéma de la capacité thermique apparente donne de meilleurs résultats au bout d’un certain temps de calcul. Cela indique que si l’on s’intéresse aux états transitoires du matériaux le premier schéma est lemeilleur choix. Cependant, si l’on s’intéresse au comportement thermique asymptotique du matériau le second schéma est plus adapté. Les résultats montrent également que le schéma de Chernoff est le plus rapide parmi les quatre schémas en terme de temps de calcul et donne des résultats comparables à ceux des deux plus précis.Enfin, dans le chapitre 5 on utilise le schéma de Chernoff avec la méthode d’éléments finis hybride-duale Raviart-Thomas d’ordre 0 et P0 pour résoudre le problème non-linéaire de conduction thermique dans un milieu composite réel avec matériau à changement de phase. Le but étant de déterminer si un matériau composite avec une distribution uniforme de pores est assimilable à un matériau à changement de phase homogènes avec des propriétés thermo-physiques équivalentes. Pour toutes les expériences numériques exposées dans ce manuscrit on a utilisé le logiciel libre d’éléments finis FreeFem++ [41]. / In this thesis we aim to develop a numerical tool that allow to solve the unsteady heatconduction problem in a composite media with a graphite foam matrix infiltrated witha phase change material such as salt, in the framework of latent heat thermal energystorage.In chapter 1, we start by explaining the model that we are studying which is separated in three sub-parts : a heat conduction problem in the foam, a phase change problem in the pores of the foam which are filled with salt and a contact resistance condition at the interface between both materials which results in a jump in the temperature field.In chapter 2, we study the steady heat conduction problem in a composite media withcontact resistance. This allow to focus on the main difficulty here which is the treatment of the thermal contact resistance at the interface between the carbon foam and the salt. Two Finite element methods are proposed in order to solve this problem : a finite element method based on Lagrange P1 and a hybrid dual finite element method using the lowest order Raviart-Thomas elements for the heat flux and P0 for the temperature. The numerical analysis of both methods is conducted and numerical examples are given to assert the analytic results. The work presented in this chapter has been published in the Journal of Scientific Computing [10].The phase change materials that we study here are mainly pure materials and as a consequence the change in phase occurs at a single point, the melting temperature. This introduces a jump in the liquid fraction and consequently in the enthalpy. This discontinuity represents an additional numerical difficulty that we propose to overcome by introducing a smoothing interval around the melting temperature. This is explained in chapter 3 where an analytical and numerical study shows that the error on the temperature behaves like " outside of the mushy zone, where _ is the width of the smoothing interval. However, inside the error behaves like p " and we prove that this estimation is optimal due to the energy trapped in the mushy zone. This chapter has been published in Communications in Mathematical Sciences [58].The next step is to determine a suitable time discretization scheme that allow to handle the non-linearity introduced by the phase change. For this purpose we present in chapter 4 four of the most used numerical schemes to solve the non-linear phase change problem : the update source method, the enthalpy linearization method, the apparent heat capacity method and the Chernoff method. Various numerical tests are conducted in order to test and compare these methods for various types of problems. Results show that the enthalpy linearization is the most accurate at each time step while the apparent heat capacity gives better results after a given time. This indicates that if we are interestedin the transitory states the first scheme is the best choice. However, if we are interested in the asymptotic thermal behavior of the material the second scheme is better. Results also show that the Chernoff scheme is the fastest in term of calculation time and gives comparable results to the one given by the first two methods.Finally, in chapter 5 we use the Chernoff method combined with the hybrid-dual finiteelement method with P0 and the lowest order Raviart-Thomas elements to solve thenon-linear heat conduction problem in a realistic composite media with a phase change material. Numerical simulations are realised using 2D-cuts of X-ray images of two real graphite matrix foams infiltrated with a salt. The aim of these simulations is to determine if the studied composite materials could be assimilated to an equivalent homogeneous phase change material with equivalent thermo-physical properties. For all simulationsconducted in this work we used the free finite element software FreeFem++ [41].
|
9 |
Imagerie Mathématique: segmentation sous contraintes géométriques ~ Théorie et ApplicationsLe Guyader, Carole 09 December 2004 (has links) (PDF)
Dans cette thèse, nous nous intéressons à des problèmes de segmentation d'images sous contraintes géométriques. Cette problématique a émergé suite à l'analyse de plusieurs méthodes classiques de détection de contours qui a été faite. En effet, ces méthodes classiques (Modèles déformables, contours actifs géodésiques, 'fast marching', etc...) se révèlent caduques quand des données de l'image sont manquantes ou de mauvaise qualité. En imagerie médicale par exemple, des phénomènes d'occlusion peuvent se produire : des organes peuvent se masquer en partie l'un l'autre (ex du foie). Par ailleurs, deux objets qui se jouxtent peuvent posséder des textures intrinsèques homogènes si bien qu'il est difficile d'identifier clairement l'interface entre ces deux objets. La définition classique d'un contour qui est caractérisé comme étant le lieu des points connexes présentant une forte transition de luminosité ne s'applique donc plus. Enfin, dans certains contextes d'étude, comme en géophysique, on peut disposer en plus des doneées d'imagerie, de données géométriques à intégrer au processus de segmentation.<br /><br />Pour pallier ces difficultés, nous proposons ici des modèles de segmentation intégrant des contraintes géométriques et satisfaisant les critères classiques de détection avec en particulier la régularité sur le contour que cela implique.
|
10 |
Effets de la viscosité et de la capillarité sur les vibrations linéaires d'une structure élastique contenant un liquide incompressible. / Effects of viscosity and capillarity on the linear vibrations of an elastic structure containing an incompressible liquidMiras, Thomas 03 July 2013 (has links)
Ce travail de recherche traite du couplage entre un liquide incompressible, irrotationnel et son contenant : une structure élastique. Cette interaction fluide-structure est traitée dans le cadre des petites déformations autour d'un état d'équilibre.Dans un premier temps, on présente une méthode d'introduction des sources dissipatives visqueuses dans le liquide à partir des équations du système couplé conservatif en s'appuyant sur une approche de type fluide potentiel généralement utilisée pour traiter les problèmes de couplage fluide-structure linéarisés non amortis. Un modèle d'amortissement diagonal est alors choisi pour le liquide et les effets dissipatifs de celui-ci sont pris en compte en calculant les coefficients d'amortissement modaux. Seuls les effets dissipatifs liées à la viscosité du liquide sont alors pris en compte. Le système couplé dissipatif obtenu possède une matrice d'amortissement non symétrique. Une résolution de ce système à amortissement non classique est alors présentée et les expressions des réponses fréquentielle et temporelle linéarisées sont données pour différents types d'excitations.Dans un deuxième temps, le liquide est supposé non visqueux et les forces de tension surfacique sont prises en compte. Cette configuration concerne principalement les satellites où le système couplé est en situation de microgravité. Une formulation du problème conservatif permettant de prendre en compte l'incompressibilité du fluide, la condition de continuité à l'interface fluide structure, les effets de capillarité du fluide ainsi que les effets éventuels de précontraintes statiques est alors établie. On se propose pour cela d'utiliser une méthode énergétique via le Principe de Moindre Action. La démarche est alors décomposée en deux étapes : une étude statique afin de déterminer la position de référence, puis une étude dynamique linéarisée autour de cette position d'équilibre. Cette formulation forme notamment une base pour l'introduction des sources dissipatives liées aux effets de capillarité via la méthode précédemment introduite. / This study deals with the coupling between an incompressible, irrotational fluid and an elastic container in the context of small amplitude vibrations.Firstly, we present a method to introduce the viscous dissipative sources in the liquid directly from the equations of the conservative coupled problem using a fluid potential approach generally used to treat linear undamped problems. A diagonal damping model is chosen for the liquid and its dissipative effects are taken into account through modal damping coefficients. Only the viscous effects are considered here. The coupled system obtained has a non symmetric damping matrix. This system with non classical damping is solved and expressions of the frequency and linearized time responses are given for different load examples.Secondly, the liquid is supposed to be inviscid and surface tension forces are considered. This configuration is related to satellite applications where the coupled system is in microgravity conditions. A unified formulation of the conservative problem taking into account the fluid incompressibility, the contact condition at the fluid structure interface, capillarity and prestress effects is given. Thus, we propose to use an energy method via the Least Action Principle. The reasoning is then divided into two parts: a static study to determine the reference state and a linearized dynamic study around this equilibrium state. This formulation is a good framework to introduce the dissipative sources associated with the capillary effects by using the method previously introduced.
|
Page generated in 0.219 seconds