Return to search

Os tipos estáveis e multiplicidades de germes quase homogêneos de Cn em Cn / The stable types and multiplicities of weighted homogeneous germs from Cn to Cn

A determinação dos invariantes numéricos associados a germes de aplicações diferenciáveis é uma ferramenta muito útil no estudo de problemas de equisingularidade em famílias. Em geral, estes invariantes são obtidos algebricamente através de esquemas r-dimensionais, que surgem nos tipos estáveis de uma perturbação estável do germe. Neste trabalho é feito um estudo sobre estes invariantes nos tipos estáveis de germes de aplicações holomorfas f : (Cn,0) em (Cn,0) finitamente determinados de coposto 1. Inicialmente é feita uma caracterização completa de todos os tipos estáveis, bem como de sua geometria. Como aplicações são estudados os invariantes no discriminante de germes quase homogêneos. São descritas fórmulas para os invariantes 0-stáveis de germes de (Cn,0) em (Cn,0). Estes resultados são aplicados para o cálculo das multiplicidades polares do discriminante de germes quase homogêneos de (C3,0) em (C3,0). / The determination of the numerical invariants associated to map germs is a helpful tool in the study of problems of equisingularity in families. In general, these invariants are given as zero schemes, that appear in the stable types of a stable perturbation of the germ. In this work we study the invariants in the stable types of corank one finitely determined holomorphic map germs f : (Cn,0) to (Cn,0). First we completely characterize all stable types and study their geometry. As applications are studied the invariants in the discriminant of weighted homogeneous germs. Formulas are described for the 0-stable invariants of map germs of (Cn,0) to (Cn,0) and these results are applied to compute the polar multiplicities of the discriminant of weighted homogeneous germes of (C3,0) to (C3,0).

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-02022005-153135
Date15 December 2004
CreatorsAldicio José Miranda
ContributorsMarcelo José Saia, Maria Aparecida Soares Ruas, João Nivaldo Tomazella
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds