Spelling suggestions: "subject:"invariantes numérica"" "subject:"invariantes numérique""
1 |
Os tipos estáveis e multiplicidades de germes quase homogêneos de Cn em Cn / The stable types and multiplicities of weighted homogeneous germs from Cn to CnMiranda, Aldicio José 15 December 2004 (has links)
A determinação dos invariantes numéricos associados a germes de aplicações diferenciáveis é uma ferramenta muito útil no estudo de problemas de equisingularidade em famílias. Em geral, estes invariantes são obtidos algebricamente através de esquemas r-dimensionais, que surgem nos tipos estáveis de uma perturbação estável do germe. Neste trabalho é feito um estudo sobre estes invariantes nos tipos estáveis de germes de aplicações holomorfas f : (Cn,0) em (Cn,0) finitamente determinados de coposto 1. Inicialmente é feita uma caracterização completa de todos os tipos estáveis, bem como de sua geometria. Como aplicações são estudados os invariantes no discriminante de germes quase homogêneos. São descritas fórmulas para os invariantes 0-stáveis de germes de (Cn,0) em (Cn,0). Estes resultados são aplicados para o cálculo das multiplicidades polares do discriminante de germes quase homogêneos de (C3,0) em (C3,0). / The determination of the numerical invariants associated to map germs is a helpful tool in the study of problems of equisingularity in families. In general, these invariants are given as zero schemes, that appear in the stable types of a stable perturbation of the germ. In this work we study the invariants in the stable types of corank one finitely determined holomorphic map germs f : (Cn,0) to (Cn,0). First we completely characterize all stable types and study their geometry. As applications are studied the invariants in the discriminant of weighted homogeneous germs. Formulas are described for the 0-stable invariants of map germs of (Cn,0) to (Cn,0) and these results are applied to compute the polar multiplicities of the discriminant of weighted homogeneous germes of (C3,0) to (C3,0).
|
2 |
Os tipos estáveis e multiplicidades de germes quase homogêneos de Cn em Cn / The stable types and multiplicities of weighted homogeneous germs from Cn to CnAldicio José Miranda 15 December 2004 (has links)
A determinação dos invariantes numéricos associados a germes de aplicações diferenciáveis é uma ferramenta muito útil no estudo de problemas de equisingularidade em famílias. Em geral, estes invariantes são obtidos algebricamente através de esquemas r-dimensionais, que surgem nos tipos estáveis de uma perturbação estável do germe. Neste trabalho é feito um estudo sobre estes invariantes nos tipos estáveis de germes de aplicações holomorfas f : (Cn,0) em (Cn,0) finitamente determinados de coposto 1. Inicialmente é feita uma caracterização completa de todos os tipos estáveis, bem como de sua geometria. Como aplicações são estudados os invariantes no discriminante de germes quase homogêneos. São descritas fórmulas para os invariantes 0-stáveis de germes de (Cn,0) em (Cn,0). Estes resultados são aplicados para o cálculo das multiplicidades polares do discriminante de germes quase homogêneos de (C3,0) em (C3,0). / The determination of the numerical invariants associated to map germs is a helpful tool in the study of problems of equisingularity in families. In general, these invariants are given as zero schemes, that appear in the stable types of a stable perturbation of the germ. In this work we study the invariants in the stable types of corank one finitely determined holomorphic map germs f : (Cn,0) to (Cn,0). First we completely characterize all stable types and study their geometry. As applications are studied the invariants in the discriminant of weighted homogeneous germs. Formulas are described for the 0-stable invariants of map germs of (Cn,0) to (Cn,0) and these results are applied to compute the polar multiplicities of the discriminant of weighted homogeneous germes of (C3,0) to (C3,0).
|
3 |
O número graduado de BettiRezende, José Éverton de Jesus 12 December 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This dissertation aims at a detailed study of the Hilbert function and graded
Betti number and the statements of some theorems that relate these two theories.
We will also a brief overview on free resolutions and minimal simplicial complex to
demonstrate the theorem of Bayer, Sturmfels and Peeva and then, we will conclude
with the following result: given an ideal J we will display a set X P2 such that
the minimal resolution the ideal of de nition of X has the same Betti diagram of the
minimal resolution of J. / Esta disserta¸c˜ao tem como objetivo um estudo detalhado da fun¸c˜ao de Hilbert e do
n´umero graduado de Betti e as demonstra¸c˜oes de alguns teoremas que relacionam
essas duas teorias. Faremos tamb´em um breve apanhado sobre resolu¸c˜oes livres minimais
e complexo simplicial para demonstrar o teorema de Bayer, Peeva e Sturmfels
e por fim e n˜ao menos importante concluiremos com o seguinte resultado: dado um
ideal J exibiremos um conjunto X P2 tal que a resolu¸c˜ao minimal do ideal de
defini¸c˜ao de X tenha o mesmo diagrama de Betti da resolu¸c˜ao minimal de J.
|
Page generated in 0.0535 seconds