L'électronique moléculaire, partie intégrante des nanotechnologies, résulte de la convergence de différents domaines: la microélectronique, la physique, la chimie ou encore la biologie. L'engouement suscité s'explique par l'espoir de trouver un complément faible coût, voire une alternative viable à l'électronique CMOS sur silicium actuelle, dont les perspectives d'évolution restent floues au-delà de 2015/2020 et dont le coût de fabrication actuel augmente de façon exponentielle. Les dispositifs à base d'électronique moléculaire apparaissent comme des candidats potentiels à l'intégration dans les mémoires du futur. En effet, leur utilisation permettrait d'obtenir, de part leurs dimensions nanométriques, des densités très élevées, bien au-delà de la roadmap silicium, tout en réduisant les coûts de fabrication grâce aux procédés d'auto-assemblage et d'intégration tridimensionnelle. Cependant, l'état de l'art actuel indique qu'il n'existe pas de modélisation appropriée à des simulations complexes et qu'à cette échelle, les variations technologiques d'un composant à l'autre seront très élevées. Les travaux de recherche présentés dans ce manuscrit de thèse proposent un nouveau type d'architecture de mémoire de très haute densité et tolérante aux dispersions, à base de transistor moléculaire à nanofils à effet de champs (NW-FET moléculaire). L'étude présente un modèle continu VHDL-AMS du transistor moléculaire, et deux niveaux de modélisation VHDL-AMS d'une nouvelle cellule mémoire moléculaire haute densité. Enfin, différentes techniques de tolérance aux fortes dispersions (jusqu'à 25% de variations des caractéristiques des dispositifs de base) sont évaluées.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00002014 |
Date | 11 1900 |
Creators | Jalabert, Antoine |
Publisher | Télécom ParisTech |
Source Sets | CCSD theses-EN-ligne, France |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds