Return to search

Community Detection in Imperfect Networks

Community detection in networks is an important area of current research with many applications. Finding community structures is a challenging task and despite significant effort no satisfactory method has been found. Different methods find different communities in the same network and with different computational requirements. To counter this problem, several different methods are often used and the results compared manually. In this thesis, we present three different methods to instead merge the results from different methods (or several runs from the same algorithm) to find better estimates of the community structure. Another problem in practical applications is noisy and imperfect networks with missing and false edges. These imperfections are natural results from the methods used to map the network structure and are often difficult to eliminate. In this thesis, we apply a Monte Carlo-sampling method in combination with the introduced methods for merging community detection results to find community structures in such networks. The method is tested by simulation studies on both real-world networks and synthetic networks with generated uncertainties and imperfections. We finally demonstrate how it is possible to generate confidence levels of the obtained community structure from the merging methods. This allows for a qualitative comparison of the robustness and significance of the network clustering. / Identifikation av grupperingar i nätverk är ett viktigt område inom aktuell forskning med många olika tillämpningsområden. Att finna grupperingar är ofta svårt och trots betydande ansträngningar har ingen tillfredsställande metod hittats. Olika metoder finner ofta olika grupperingar i samma nätverk och kräver varierande beräkningskraft. För att hantera dessa problem används ofta flera metoder vartefter resultaten jämförs manuellt. I detta examensarbete presenterar vi tre olika metoder att istället slå samman resultat från olika metoder (eller fler körningar från samma algoritm) för att hitta bättre uppskattningar av grupperingarna. Ett annat problem i praktiska tillämpningar är brus och ofullständiga nätverk med saknade och falska kanter. Dessa brister är naturliga resultat från de metoder som används för att kartlägga nätverketstrukturen och det är ofta svåra att eliminera dessa. I detta examensarbete använder vi Monte Carlo-metoder i kombination med de introducerade metoderna för att slå samman funna grupperingar för att hitta grupperingar i det osäkra nätverket. Vi testar metoden genom simuleringstudier på både verkliga och syntetiska nätverk med genererade osäkerheter och brister. Slutligen demostrerar vi hur det är möjligt att skapa konfidensnivåer för noder i grupperingar med hjälp av metoderna för sammanslagning. Detta möjliggör en kvalitativ jämförelse av stabilitet och signifikans av identifierade nätverksgrupperingar.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-44381
Date January 2011
CreatorsDahlin, Johan
PublisherUmeå universitet, Institutionen för fysik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds