Made available in DSpace on 2014-06-11T19:26:15Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-03-21Bitstream added on 2014-06-13T20:26:59Z : No. of bitstreams: 1
trinca_cc_me_sjrp.pdf: 385971 bytes, checksum: f33970449a23cc2073a2912a75704466 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho, estudamos o Teorema clássico de Borsuk - Ulam e também outros Teoremas do tipo Borsuk - Ulam. Para isto, consideramos aplicacões contínuas f : (Cn+1 L f0g) ! Cn. Uma raíz primitiva k - ésima da unidade » nos fornece uma Zk-acão livre sobre Cn. Um teorema nos diz que a equação kL1X i=0 »if(»ix) = 0 sempre tem uma solução x 2 (Cn+1 L f0g). Este resultado produz várias aplicações. Por exemplo, se p é um número primo, f : Sn ! Rr uma aplicacão contínua, com n > r(p L 1), então alguma órbita da Zp-ação deve ser aplicada em um ponto. / In this work, we study the Classical Borsuk-Ulam Theorem and also other Borsuk- Ulam Theorems. For that, we consider continuous maps f : (Cn+1 L f0g) ! Cn. A primitive k-root of unity » gives rise to a free Zk-action on Cn. A result states that the equation kL i=0 »if(»ix) = 0 always has a solution x 2 (Cn+1 L f0g). This result provides several aplications. For example, if p is a prime number, f : Sn ! Rr a continuous map and n > r(p L 1), then some orbit of the Zp-action must be mapped into a point.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unesp.br:11449/92955 |
Date | 21 March 2007 |
Creators | Trinca, Cibele Cristina [UNESP] |
Contributors | Universidade Estadual Paulista (UNESP), Andrade, Maria Gorete Carreira [UNESP] |
Publisher | Universidade Estadual Paulista (UNESP) |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 57 f. |
Source | Aleph, reponame:Repositório Institucional da UNESP, instname:Universidade Estadual Paulista, instacron:UNESP |
Rights | info:eu-repo/semantics/openAccess |
Relation | -1, -1 |
Page generated in 0.0024 seconds