Spelling suggestions: "subject:"Borsuk-Ulam, teorema dde"" "subject:"Borsuk-Ulam, teorema dee""
1 |
Algumas generalizações do teorema clássico de Borsuk-Ulam /Morita, Ana Maria Mathias January 2014 (has links)
Orientador: Maria Gorete Carreira Andrade / Banca: Ermínia de Lourdes Campello Fanti / Banca: Denise de Mattos / Resumo: O teorema clássico de Borsuk-Ulam afirma que se f : Sn ����! Rn e uma aplicação contínua, então existe um ponto x na esfera tal que f(x) = f(����x). Desde a publicação, diversas generalizações desse resultado têm sido abordadas. Algumas generalizações consistem em substituir o domínio (Sn;A), onde A e a involução antipodal, por outros pares (X; T) de involuções livres, ou o contradomínio Rn por espaços topológicos mais gerais Y . Nesse caso, dizemos que ((X; T); Y ) satisfaz a propriedade de Borsuk-Ulam se dada uma aplicação contínua f : X ����! Y , existe um ponto x em X tal que f(x) = f(T(x)). Neste trabalho, detalhamos a demonstração de um resultado de classificação apresentado por Gonçalves em [6], que fornece condições necessárias e suficientes para que uma superfície fechada satisfaça a propriedade de Borsuk-Ulam. Mostramos também uma prova detalhada de um resultado apresentado por Desideri, Pergher e Vendrúsculo em [3], que estabele um critério algébrico para que um espaço topológico qualquer satisfaça a propriedade de Borsuk-Ulam / Abstract: The classic Borsuk-Ulam theorem states that if f : Sn ����! Rn is a continuous map, then there exists a point x in the sphere such that f(x) = f(����x). Since the publication, many generalizations of that result have been studied. Some generalizations consist in replacing either the domain (Sn;A), where A is the antipodal involution, by other free involution pair (X; T), or the target space Rn by more general topological spaces Y . In that case, we say that ((X; T); Y ) satisfies the Borsuk-Ulam property if given any continuous map f : X ����! Y , there exists a point x in X such that f(x) = f(T(x)). In this work, we detail the proof of a classification result presented by Gonçalves in [6], that provides necessary and suficient conditions for a closed surface satisfy the Borsuk-Ulam property. We also show a detailed proof of a result presented by, Desideri, Pergher and Vendrúsculo in [3], that establishes an algebraic criterion for any topological space satisfy the Borsuk-Ulam property / Mestre
|
2 |
Algumas generalizações do teorema clássico de Borsuk-UlamMorita, Ana Maria Mathias [UNESP] 20 February 2014 (has links) (PDF)
Made available in DSpace on 2015-04-09T12:28:27Z (GMT). No. of bitstreams: 0
Previous issue date: 2014-02-20Bitstream added on 2015-04-09T12:47:32Z : No. of bitstreams: 1
000811736.pdf: 442400 bytes, checksum: 037b5d630eff63eb854ef35fecab8412 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O teorema clássico de Borsuk-Ulam afirma que se f : Sn ! Rn e uma aplicação contínua, então existe um ponto x na esfera tal que f(x) = f(x). Desde a publicação, diversas generalizações desse resultado têm sido abordadas. Algumas generalizações consistem em substituir o domínio (Sn;A), onde A e a involução antipodal, por outros pares (X; T) de involuções livres, ou o contradomínio Rn por espaços topológicos mais gerais Y . Nesse caso, dizemos que ((X; T); Y ) satisfaz a propriedade de Borsuk-Ulam se dada uma aplicação contínua f : X ! Y , existe um ponto x em X tal que f(x) = f(T(x)). Neste trabalho, detalhamos a demonstração de um resultado de classificação apresentado por Gonçalves em [6], que fornece condições necessárias e suficientes para que uma superfície fechada satisfaça a propriedade de Borsuk-Ulam. Mostramos também uma prova detalhada de um resultado apresentado por Desideri, Pergher e Vendrúsculo em [3], que estabele um critério algébrico para que um espaço topológico qualquer satisfaça a propriedade de Borsuk-Ulam / The classic Borsuk-Ulam theorem states that if f : Sn ! Rn is a continuous map, then there exists a point x in the sphere such that f(x) = f(x). Since the publication, many generalizations of that result have been studied. Some generalizations consist in replacing either the domain (Sn;A), where A is the antipodal involution, by other free involution pair (X; T), or the target space Rn by more general topological spaces Y . In that case, we say that ((X; T); Y ) satisfies the Borsuk-Ulam property if given any continuous map f : X ! Y , there exists a point x in X such that f(x) = f(T(x)). In this work, we detail the proof of a classification result presented by Gonçalves in [6], that provides necessary and suficient conditions for a closed surface satisfy the Borsuk-Ulam property. We also show a detailed proof of a result presented by, Desideri, Pergher and Vendrúsculo in [3], that establishes an algebraic criterion for any topological space satisfy the Borsuk-Ulam property
|
3 |
O número de Lefschetz e teoremas do tipo Borsuk-UlamTrinca, Cibele Cristina [UNESP] 21 March 2007 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:15Z (GMT). No. of bitstreams: 0
Previous issue date: 2007-03-21Bitstream added on 2014-06-13T20:26:59Z : No. of bitstreams: 1
trinca_cc_me_sjrp.pdf: 385971 bytes, checksum: f33970449a23cc2073a2912a75704466 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho, estudamos o Teorema clássico de Borsuk - Ulam e também outros Teoremas do tipo Borsuk - Ulam. Para isto, consideramos aplicacões contínuas f : (Cn+1 L f0g) ! Cn. Uma raíz primitiva k - ésima da unidade » nos fornece uma Zk-acão livre sobre Cn. Um teorema nos diz que a equação kL1X i=0 »if(»ix) = 0 sempre tem uma solução x 2 (Cn+1 L f0g). Este resultado produz várias aplicações. Por exemplo, se p é um número primo, f : Sn ! Rr uma aplicacão contínua, com n > r(p L 1), então alguma órbita da Zp-ação deve ser aplicada em um ponto. / In this work, we study the Classical Borsuk-Ulam Theorem and also other Borsuk- Ulam Theorems. For that, we consider continuous maps f : (Cn+1 L f0g) ! Cn. A primitive k-root of unity » gives rise to a free Zk-action on Cn. A result states that the equation kL i=0 »if(»ix) = 0 always has a solution x 2 (Cn+1 L f0g). This result provides several aplications. For example, if p is a prime number, f : Sn ! Rr a continuous map and n > r(p L 1), then some orbit of the Zp-action must be mapped into a point.
|
Page generated in 0.0673 seconds