• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 5
  • 5
  • 5
  • 5
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Axiomas de separação em espaços de aproximação

Nascimento, Izael do 20 June 2013 (has links)
Resumo: Espaços de aproximação foram introduzimos pelo matemático belga Eobert Lowen, com o principal objetivo de resolver algumas falhas de cunho algébrico de espaços topológicos metrizáveis, mas acabaram se tornando entes matemáticos úteis nas mais diversas áreas e interessantes objetos de estudo por si próprios. Estes espaços abstraem as principais características dos espaços topológicos, métricos e uniformes e são um elo de ligação adequado entre os mesmos. Neste trabalho nós fazemos uma introdução aos espaços de aproximação, apresentando algumas das várias estruturas que podem ser usadas para descrevê-los: distâncias, operadores limite, sistemas de localização, torres, envelopes e quadros. Desenvolvemos cada uma destas estruturas e mostramos que todas são equivalentes em certo sentido. Ao final do trabalho damos algumas novas caracterizações de axiomas de separação em um espaço topológico, utilizando as estruturas do espaço de aproximação a ele associado.
2

Linguagem de categorias e o Teorema de van Kampen /

Moreira, Charles dos Anjos. January 2017 (has links)
Orientador: Elíris Cristina Rizziolli / Banca: Aldício José Miranda / Banca: João Peres Vieira / Resumo: Esse trabalho trata de elementos da Topologia Algébrica, a qual tem como fundamental aplicação abordar questões acerca de Espaços Topológicos sob o ponto de vista algébrico. Uma das questões é tentar responder se dois espaços topológicos X e Y são homeomorfos. Neste sentido, o grupo fundamental é uma ferramenta algébrica útil por se tratar de um invariante topológico. Além disso, apresentamos o Teorema de van Kampen do ponto de vista da Linguagem de Categorias e Funtores / Abstract: This work treats of elements of the Algebraic Topology, which has as fundamental application to approach subjects concerning Topological Spaces under the algebraic point of view. One of the subjects is to try to answer if two topological spaces X and Y are homeomorphics. In this sense, the fundamental group is an useful algebraic tool for treating of an topological invariant. In addition, we presented the van Kampen's Theorem of the point of view of the language of Categories and Functors / Mestre
3

Algumas generalizações do teorema clássico de Borsuk-Ulam

Morita, Ana Maria Mathias [UNESP] 20 February 2014 (has links) (PDF)
Made available in DSpace on 2015-04-09T12:28:27Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-02-20Bitstream added on 2015-04-09T12:47:32Z : No. of bitstreams: 1 000811736.pdf: 442400 bytes, checksum: 037b5d630eff63eb854ef35fecab8412 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O teorema clássico de Borsuk-Ulam afirma que se f : Sn ! Rn e uma aplicação contínua, então existe um ponto x na esfera tal que f(x) = f(x). Desde a publicação, diversas generalizações desse resultado têm sido abordadas. Algumas generalizações consistem em substituir o domínio (Sn;A), onde A e a involução antipodal, por outros pares (X; T) de involuções livres, ou o contradomínio Rn por espaços topológicos mais gerais Y . Nesse caso, dizemos que ((X; T); Y ) satisfaz a propriedade de Borsuk-Ulam se dada uma aplicação contínua f : X ! Y , existe um ponto x em X tal que f(x) = f(T(x)). Neste trabalho, detalhamos a demonstração de um resultado de classificação apresentado por Gonçalves em [6], que fornece condições necessárias e suficientes para que uma superfície fechada satisfaça a propriedade de Borsuk-Ulam. Mostramos também uma prova detalhada de um resultado apresentado por Desideri, Pergher e Vendrúsculo em [3], que estabele um critério algébrico para que um espaço topológico qualquer satisfaça a propriedade de Borsuk-Ulam / The classic Borsuk-Ulam theorem states that if f : Sn ! Rn is a continuous map, then there exists a point x in the sphere such that f(x) = f(x). Since the publication, many generalizations of that result have been studied. Some generalizations consist in replacing either the domain (Sn;A), where A is the antipodal involution, by other free involution pair (X; T), or the target space Rn by more general topological spaces Y . In that case, we say that ((X; T); Y ) satisfies the Borsuk-Ulam property if given any continuous map f : X ! Y , there exists a point x in X such that f(x) = f(T(x)). In this work, we detail the proof of a classification result presented by Gonçalves in [6], that provides necessary and suficient conditions for a closed surface satisfy the Borsuk-Ulam property. We also show a detailed proof of a result presented by, Desideri, Pergher and Vendrúsculo in [3], that establishes an algebraic criterion for any topological space satisfy the Borsuk-Ulam property
4

Espaços vetoriais e topológicos de intervalos generalizados com alguns conceitos de cálculo e otimização intervalar

Costa, Tiago Mendonça da [UNESP] 29 May 2014 (has links) (PDF)
Made available in DSpace on 2014-11-10T11:09:53Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-05-29Bitstream added on 2014-11-10T11:57:47Z : No. of bitstreams: 1 000789915_20151203.pdf: 238260 bytes, checksum: 01c4adf72b2af011fbef2f093bba1467 (MD5) Bitstreams deleted on 2015-12-07T09:44:35Z: 000789915_20151203.pdf,. Added 1 bitstream(s) on 2015-12-07T09:45:16Z : No. of bitstreams: 1 000789915.pdf: 971219 bytes, checksum: 2821d946a089738f0f2d290034310374 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Neste trabalho apresentamos um método para munir o conjunto intervalar generalizado M = I(R) ∪ I(R); sendo I(R) = f[a1; a2] : a1 a2 e a1; a2 2 Rg e I(R) = f[a1; a2] : [a2; a1] 2 I(R)g; com algumas diferentes estruturas, como algébrica, topológica e métrica. Também equipamos M com relações de ordem. Na verdade, fizemos isso em um contexto mais geral, pois trabalhamos em Mn = M M M para n 2 N: Nós formulamos problemas de otimização intervalar e relacionamos esses problemas com clássicos problemas de otimização multiobjetivo. Além disso, apresentamos uma versão do Teorema minmax no contexto intervalar e também desenvolvemos conceitos do cálculo em espaços intervalar generalizado, os quais são usados para encontrar o conjunto dos estados atingíveis de um inclusão diferencial clássica sob algumas condições dadas / This work presents a method to endow the generalized interval set M = I(R) ∪ I(R); where I(R) = f[a1; a2] : a1 a2 and a1; a2 2 Rg and I(R) = f[a1; a2] : [a2; a1] 2 I(R)g; with some different structures, such as algebraic, topological, and metric. We also equip M with order relations. Actually, we did this in a more general context because we worked in Mn = M M M for n 2 N: We formulated interval optimization problems and related them to classic multi-objective optimization problems. We presented a version of the mini-max Theorem in the interval context, and also developed concepts of calculus on the generalized interval space which are used to find the attainable state set of a classic differential inclusion under some given conditions
5

Espaços vetoriais e topológicos de intervalos generalizados com alguns conceitos de cálculo e otimização intervalar /

Costa, Tiago Mendonça da. January 2014 (has links)
Orientador: Geraldo Nunes Silva / Coorientador: Weldon A Lodwick / Banca: Silvio Alexandre de Araujo / Banca: Valeriano Antunes de Oliveira / Banca: Lucelina Batista Santos / Banca: Yurilev Chalco-Cano / Resumo: Neste trabalho apresentamos um método para munir o conjunto intervalar generalizado M = I(R) ∪ I(R); sendo I(R) = f[a1; a2] : a1 a2 e a1; a2 2 Rg e I(R) = f[a1; a2] : [a2; a1] 2 I(R)g; com algumas diferentes estruturas, como algébrica, topológica e métrica. Também equipamos M com relações de ordem. Na verdade, fizemos isso em um contexto mais geral, pois trabalhamos em Mn = M M M para n 2 N: Nós formulamos problemas de otimização intervalar e relacionamos esses problemas com clássicos problemas de otimização multiobjetivo. Além disso, apresentamos uma versão do Teorema minmax no contexto intervalar e também desenvolvemos conceitos do cálculo em espaços intervalar generalizado, os quais são usados para encontrar o conjunto dos estados atingíveis de um inclusão diferencial clássica sob algumas condições dadas / Abstract: This work presents a method to endow the generalized interval set M = I(R) ∪ I(R); where I(R) = f[a1; a2] : a1 a2 and a1; a2 2 Rg and I(R) = f[a1; a2] : [a2; a1] 2 I(R)g; with some different structures, such as algebraic, topological, and metric. We also equip M with order relations. Actually, we did this in a more general context because we worked in Mn = M M M for n 2 N: We formulated interval optimization problems and related them to classic multi-objective optimization problems. We presented a version of the mini-max Theorem in the interval context, and also developed concepts of calculus on the generalized interval space which are used to find the attainable state set of a classic differential inclusion under some given conditions / Doutor
6

Um estudo sobre a classificação topológica das superfícies /

Sousa, Ana Flávia Mariano de. January 2016 (has links)
Orientador: Thaís Fernanda Mendes Monis / Banca: Nelson Antônio Silva / Banca: Sérgio Tsuyoshi Ura / Resumo: Nesse trabalho, consideramos o conceito de variedades topológicas. Porém, nos especializamos nas variedades conexas de dimensão 2, as chamadas superfícies. Nosso objetivo é o estudo da classificação topológica das superfícies compactas. Para isto, enunciamos e demonstramos o Teorema de classificação das superfícies compactas. Desta maneira, mostramos que toda superfície compacta orientável é homeomorfa à esfera ou a uma soma conexa de toros, e que toda superfície compacta não orientável é homeomorfa a uma soma conexa de planos projetivos / Abstract: In this work, we consider the concept of a topological manifold. However, we focus on the connected 2-dimensional manifolds, the so-called surfaces. Our goal is the study of the topological classification of the compact surfaces. In this direction, we state and prove the classification Theorem of compact surfaces. That is, we show that every orientable compact surface is homeomorphic to the sphere or to a connected sum of torus, and every non-orientable compact surface is homeomorphic to a connected sum of projective planes / Mestre
7

Algumas generalizações do teorema clássico de Borsuk-Ulam /

Morita, Ana Maria Mathias January 2014 (has links)
Orientador: Maria Gorete Carreira Andrade / Banca: Ermínia de Lourdes Campello Fanti / Banca: Denise de Mattos / Resumo: O teorema clássico de Borsuk-Ulam afirma que se f : Sn ����! Rn e uma aplicação contínua, então existe um ponto x na esfera tal que f(x) = f(����x). Desde a publicação, diversas generalizações desse resultado têm sido abordadas. Algumas generalizações consistem em substituir o domínio (Sn;A), onde A e a involução antipodal, por outros pares (X; T) de involuções livres, ou o contradomínio Rn por espaços topológicos mais gerais Y . Nesse caso, dizemos que ((X; T); Y ) satisfaz a propriedade de Borsuk-Ulam se dada uma aplicação contínua f : X ����! Y , existe um ponto x em X tal que f(x) = f(T(x)). Neste trabalho, detalhamos a demonstração de um resultado de classificação apresentado por Gonçalves em [6], que fornece condições necessárias e suficientes para que uma superfície fechada satisfaça a propriedade de Borsuk-Ulam. Mostramos também uma prova detalhada de um resultado apresentado por Desideri, Pergher e Vendrúsculo em [3], que estabele um critério algébrico para que um espaço topológico qualquer satisfaça a propriedade de Borsuk-Ulam / Abstract: The classic Borsuk-Ulam theorem states that if f : Sn ����! Rn is a continuous map, then there exists a point x in the sphere such that f(x) = f(����x). Since the publication, many generalizations of that result have been studied. Some generalizations consist in replacing either the domain (Sn;A), where A is the antipodal involution, by other free involution pair (X; T), or the target space Rn by more general topological spaces Y . In that case, we say that ((X; T); Y ) satisfies the Borsuk-Ulam property if given any continuous map f : X ����! Y , there exists a point x in X such that f(x) = f(T(x)). In this work, we detail the proof of a classification result presented by Gonçalves in [6], that provides necessary and suficient conditions for a closed surface satisfy the Borsuk-Ulam property. We also show a detailed proof of a result presented by, Desideri, Pergher and Vendrúsculo in [3], that establishes an algebraic criterion for any topological space satisfy the Borsuk-Ulam property / Mestre
8

Introdução à teoria de homotopia /

Araújo, Judith de Paula. January 2011 (has links)
Orientador: João Peres Vieira / Banca: Daniel Vendrúscolo / Banca: Thiago de Melo / Resumo: O principal objetivo deste trabalho é demonstrar teoremas relevantes como o Teorema Fundamental da Álgebra e o Teorema do Ponto Fixo de Brouwer no plano, além dos problemas de extensão e levantamento e o Teorema de Mayer-Vietoris. Para isto, primeiramente associamos a cada espaço topológico X uma estrutura de grupo ou de conjunto G(X), e a cada função contínua f : X → Y um homomor smo de estruturas f∗ : G(X) → G(Y ) ou f∗ : G(Y ) → G(X) satisfazendo determinadas propriedades / Abstract: The main objective is to prove relevant theorems as the Fundamental Theorem of Algebra and Brouwer's Fixed Point Theorem in the plane, besides the problems of extension and lifting theorem and the Mayer-Vietoris Theorem. For this, rst we associate to each topological space X a group structure or set G(X), and every continuous function f : X → Y a homomorphism f∗ : G(X) → G(Y ) or f∗ : G(Y ) → G(X) satisfying certain properties / Mestre
9

Introdução à teoria de homotopia

Araújo, Judith de Paula [UNESP] 17 June 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:27:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-06-17Bitstream added on 2014-06-13T20:47:44Z : No. of bitstreams: 1 araujo_jp_me_rcla.pdf: 571397 bytes, checksum: aa8e71371a3c485d93ebe5d75dc6a465 (MD5) / O principal objetivo deste trabalho é demonstrar teoremas relevantes como o Teorema Fundamental da Álgebra e o Teorema do Ponto Fixo de Brouwer no plano, além dos problemas de extensão e levantamento e o Teorema de Mayer-Vietoris. Para isto, primeiramente associamos a cada espaço topológico X uma estrutura de grupo ou de conjunto G(X), e a cada função contínua f : X → Y um homomor smo de estruturas f∗ : G(X) → G(Y ) ou f∗ : G(Y ) → G(X) satisfazendo determinadas propriedades / The main objective is to prove relevant theorems as the Fundamental Theorem of Algebra and Brouwer's Fixed Point Theorem in the plane, besides the problems of extension and lifting theorem and the Mayer-Vietoris Theorem. For this, rst we associate to each topological space X a group structure or set G(X), and every continuous function f : X → Y a homomorphism f∗ : G(X) → G(Y ) or f∗ : G(Y ) → G(X) satisfying certain properties
10

Descobrindo a Topologia : um compêndio de fundamentos teóricos e atividades lúdicas para auxiliar na formalização de conceitos topológicos no ensino básico /

Silva, Camila Tolin Santos da. January 2018 (has links)
Orientador: José Roberto Nogueira / Banca: Dayene Miralha de Carvalho Sano / Banca: Suetonio de Almeida Meira / Resumo: A topologia é um ramo da matemática, sutilmente entrelaçado com a Geometria, de aplicação em diversas áreas do conhecimento, cuja conceituação foi apresentada de forma expressiva nas escolas durante as décadas de 60 e 70, com o movimento educacional conhecido como Matemática Moderna. Através das mudanças curriculares, muitos temas abordados no ensino fundamental e médio foram reestruturados dentro de um conjunto de parâmetros para a organização curricular da base nacional comum, os PCN's, que normatizam a base do ensino e orientam que a matemática deve ser apresentada para o desenvolvimento de habilidades inerentes à resolução de problemas, aquisição de linguagem simbólica, modelagem e interpretação de situações cotidianas, argumentação e aplicação em situações da vida real. Portanto, esse trabalho foi elaborado com o objetivo de fornecer suporte para o ensino da topologia no ensino básico, através da compilação de fatos históricos, formalização de definições básicas de caráter introdutório como continuidade, espaços métricos, espaços topológicos, entre outros, apresentação de atividades que poderão ser trabalhadas conjuntamente com o ensino da geometria, que de forma lúdica e intuitiva, ajudarão a alicerçar a base para um futuro aprofundamento desses conceitos, auxiliando no desenvolvimento do pensamento topológico / Abstract: Topology is a branch of mathematics, subtly intertwined with geometry, of application in several areas of knowledge, whose conceptualization was presented expressively in schools during the 60s and 70s, with the educational movement known as Modern Mathematics. Through the curricular changes, many topics addressed in elementary and secondary education have been restructured within a set of parameters for the curriculum organization of the common national base, the PCNs, that normalize the base of the teaching and guide that the mathematics must be presented for the development of inherent abilities to solve problems, acquisition of symbolic language, modeling and interpretation of everyday situations, argumentation and application in real life situations. Thus, this work was developed with the purpose of providing support for the teaching of topology in basic education, through the compilation of historical facts, formalization of basic de nitions of introductory character such as continuity, metric spaces, topological spaces, among others, presentation of activities which can be worked together with the teaching geometry, which in a playful and intuitive way, will help to lay the foundation for a future deepening of these concepts, aiding in the development of topological thinking / Mestre

Page generated in 0.1307 seconds