Orientador: Fernando Eduardo Torres Orihuela / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-08T08:38:30Z (GMT). No. of bitstreams: 1
Silva_RenataRodriguesMarcuz_M.pdf: 1068260 bytes, checksum: 7d86da2facbe3c87531cf1faaea33bd1 (MD5)
Previous issue date: 2006 / Resumo: Um semigrupo (numérico) é um sub-semigrupo dos inteiros não negativos tal que o seu complemento neste conjunto é finito. O número de elementos deste conjunto complementar é chamado de gênero e o primeiro elemento positivo do semigrupo recebe o nome de multiplicidade. Tais semigrupos aparecem na forma natural em diversos contextos da matemática. Nossa motivação aqui provém dos semigrupos de Weierstrass (Superfícies de Riemann). Neste trabalho se estuda portanto a estrutura (alguns invariantes) de semigrupos abstratos, levando em conta o seu gênero e a sua multiplicidade. Os protótipos das problemáticas abordadas nesta dissertação são facilmente explicados aos leigos em matemática através de um exemplo simples: Suponha que existam apenas moedas de valores 5, 8 e 9. Então o valor 12 é o maior valor dos sete possíveis que não pode ser construído por meio destas moedas / Abstract: A numerical subgroup is a sub-semigroup of the non-negative integers N0 whose complement in N0 is finite. The number of elements of the complement set is called genus and the first positive element of semigroup is called multiplicity. Such semigroups appear in a natural way in several branches of Mathematics. Our motivation comes fromWeierstrass semigroups (Riemann Surfaces). We shall study the structure of abstract semigroups, by taking into account both its genus and multiplicity. There is a nice property that a can be explained to the non specialist: Suppose you have some coins whose values are only 5, 8 and 9 pounds, then 12 pounds cannot be obtained with these coins / Mestrado / Algebra / Mestre em Matemática
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/307076 |
Date | 12 July 2006 |
Creators | Silva, Renata Rodrigues Marcuz |
Contributors | UNIVERSIDADE ESTADUAL DE CAMPINAS, Torres Orihuela, Fernando Eduardo, 1961-, Brumatti, Paulo Roberto, Oliveira, Jose Gilvan de |
Publisher | [s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 45f. : il., application/pdf |
Source | reponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds