Return to search

Ärendehantering genom maskininlärning

Det här examensarbetet undersöker hur artificiell intelligens kan användas för att automatisktkategorisera felanmälan som behandlas i ett ärendehanteringssystem genom att användamaskininlärning och tekniker som text mining. Studien utgår från Design Science ResearchMethodology och Peffers sex steg för designmetodologi som utöver design även berör kravställningoch utvärdering av funktion. Maskininlärningsmodellerna som tagits fram tränades på historiskadata från ärendehanteringssystem Infracontrol Online med fyra typer av olika algoritmer, NaiveBayes, Support Vector Machine, Neural Network och Random Forest. En webapplikation togs framför att demonstrera hur en av de maskininlärningsmodeller som tränats fungerar och kan användasför att kategorisera text. Olika användare av systemet har därefter haft möjlighet att testafunktionen och utvärdera hur den fungerar genom att markera när kategoriseringen avtextprompter träffar rätt respektive fel.Resultatet visar på att det är möjligt att lösa uppgiften med hjälp av maskininlärning. En avgörandedel av utvecklingsarbetet för att göra modellen användbar var urvalet av data som användes för attträna modellen. Olika kunder som använder systemet, använder det på olika sätt, vilket gjorde detfördelaktigt att separera dem och träna modeller för olika kunder individuellt. En källa tillinkonsistenta resultat är hur organisationer förändrar sina processer och ärendehantering över tidoch problemet hanterades genom att begränsa hur långt tillbaka i tiden modellen hämtar data förträning. Dessa två strategier för att hantera problem har nackdelen att den mängd historiska datasom finns tillgänglig att träna modellen på minskar, men resultaten visar inte någon tydlig nackdelför de maskininlärningsmodeller som tränats på mindre datamängder utan även de har en godtagbarträffsäkerhet. / This thesis investigates how artificial intelligence can be used to automatically categorize faultreports that are processed in a case management system by using machine learning and techniquessuch as text mining. The study is based on Design Science Research Methodology and Peffer's sixsteps of design methodology, which in addition to design of an artifact concerns requirements andevaluation. The machine learning models that were developed were trained on historical data fromthe case management system Infracontrol Online, using four types of algorithms, Naive Bayes,Support Vector Machine, Neural Network, and Random Forest. A web application was developed todemonstrate how one of the machine learning models trained works and can be used to categorizetext. Regular users of the system have then had the opportunity to test the performance of themodel and evaluate how it works by marking where it categorizes text prompts correctly.The results show that it is possible to solve the task using machine learning. A crucial part of thedevelopment was the selection of data used to train the model. Different customers using thesystem use it in different ways, which made it advantageous to separate them and train models fordifferent customers independently. Another source of inconsistent results is how organizationschange their processes and thus case management over time. This issue was addressed by limitinghow far back in time the model retrieves data for training. The two strategies for solving the issuesmentioned have the disadvantage that the amount of historical data available for training decreases,but the results do not show any clear disadvantage for the machine learning models trained onsmaller data sets. They perform well and tests show an acceptable level of accuracy for theirpredictions

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:ltu-103938
Date January 2023
CreatorsBennheden, Daniel
PublisherLuleå tekniska universitet, Institutionen för system- och rymdteknik
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds