Return to search

Plasma and ion beam enhanced chemical vapour deposition of diamond and diamond-like carbon

WC-Co cutting tools are widely used in the machining industry. The application of diamond coatings on the surfaces of the tools would prolong the cutting lifetime and improves the manufacturing efficiency. However, direct chemical vapor deposition (CVD) of diamond coatings on WC-Co suffer from severe premature adhesion failure due to interfacial graphitization induced by the binder phase Co. In this research, a combination of hydrochloric acid (HCl) and hydrogen (H2) plasma pretreatments and a novel double interlayer of carbide forming element (CFE)/Al were developed to enhance diamond nucleation and adhesion. The results showed that both the pretreatments and interlayers were effective in forming continuous and adhesive nanocrystalline diamond coatings. The method is a promising replacement of the hazardous Murakami's regent currently used in WC-Co pretreatment with a more environmental friendly approach.<p>
Apart from coatings, diamond can be fabricated into other forms of nanostructures, such as nanotips. In this work, it was demonstrated that oriented diamond nanotip arrays can be fabricated by ion beam etching of as-grown CVD diamond. The orientation of diamond nanotips can be controlled by adjusting the direction of incident ion beam. This method overcomes the limits of other techniques in producing nanotip arrays on large areas with controlled orientation. Oriented diamond nano-tip arrays have been used to produce anisotropic frictional surface, which is successfully used in ultra-precision positioning systems.<p>
Diamond-like carbon (DLC) has many properties comparable to diamond. In this thesis, the preparation of á-C:H thin films by end-Hall (EH) ion source and the effects of ion energy and nitrogen doping on the microstructure and mechanical properties of the as-deposited thin films were investigated. The results have demonstrated that smooth and uniform á-C:H and á-C:H:N films with large area and reasonably high hardness and Youngs modulus can be synthesized by EH ion source with a low ion energy. The EH ion beam deposition of carbon-based thin films have potential applications such as protective coatings on high capacity magnetic memory disk, for which coating uniformity and smoothness cannot be achieved by the traditional sputtering methods.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-08162010-142110
Date27 August 2010
CreatorsTang, Yongji
ContributorsYang, Qiaoqin, Hirose, Akira, Bradley, Michael, Xiao, Chijin, Oguocha, Ikechukwuka N., Sun, Andy (Xueliang)
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-08162010-142110/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0024 seconds