• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sound transmission through a chipboard floating floor supported on a concrete slab

Stewart, Michael Andrew January 1996 (has links)
No description available.
2

Amorphous carbon interlayers for gold on elastomer stretchable conductors

Manzoor, M.U., Tuinea-Bobe, Cristina-Luminita, McKavanagh, F., Byrne, C.P., Dixon, D., Maguire, P.D., Lemoine, P. 02 May 2019 (has links)
No / Gold on polydimethylsiloxane (PDMS) stretchable conductors were prepared using a novel approach by interlacing an hydrogenated amorphous carbon (a-C : H) layer between the deposited metal layer and the elastomer. AFM analysis of the a-C : H film surface before gold deposition shows nanoscale buckling, the corresponding increase in specific surface area corresponds to a strain compensation for the first 4–6% of bi-axial tensile loading. Without this interlayer, the deposited gold films show much smaller and uni-directional ripples as well as more cracks and delaminations. With a-C : H interlayer, the initial electrical resistivity of the metal film decreases markedly (280-fold decrease to 8 × 10−6 Ω cm). This is not due to conduction within the carbon interlayer; both a-C : H/PDMS and PDMS substrates are electrically insulating. Upon cyclic tensile loading, both films become more resistive, but return to their initial state after 20 tensile cycles up to 60% strain. Profiling experiments using secondary ion mass spectroscopy and x-ray photoelectron spectroscopy indicate that the a-C : H layer intermixes with the PDMS, resulting in a graded layer of decreasing stiffness. We believe that both this graded layer and the surface buckling contribute to the observed improvement in the electrical performance of these stretchable conductors.
3

Study of charge-collecting interlayers for single-junction and tandem organic solar cells

Shim, Jae Won 22 May 2014 (has links)
A hole-collecting interlayer layer for organic solar cells, NiO, processed by atomic layer deposition (ALD) was studied. ALD-NiO film offered a novel alternative to efficient hole-collecting interlayers in conventional single-junction organic solar cells. Next, surface modifications with aliphatic amine group containing polymers for use as electron-collecting interlayers were studied. Physisorption of the polymers was found to lead to large reduction of the work function of conducting materials. This approach provides an efficient way to provide air-stable low-work function electrodes for organic solar cells. Highly efficient inverted organic solar cells were demonstrated by using the polymer surface modified electrodes. Lastly, charge recombination layers of the inverted tandem organic solar cells were studied. Efficient charge recombination layers were realized by using the ALD and the polymer surface modification. The charge recombination layer processed by ALD provided enhanced electrical and barrier properties. Furthermore, the polymer surface modification on the charge recombination layers showed large work function contrast, leading to improved inverted tandem organic solar cells. The inverted tandem organic solar cells with the new charge recombination layer showed fill factor over 70% and power conversion efficiency over 8%.
4

Development of new cathodic interlayers with nano-architectures for lithium-sulfur batteries

Zhao, Teng January 2018 (has links)
Issues with the dissolution and diffusion of polysulfides in liquid organic electrolytes hinder the advance of lithium–sulfur (Li-S) batteries for next generation energy storage. To trap and re-utilize the polysulfides, brush-like, zinc oxide (ZnO) nanowires based interlayers were prepared ex-situ using a wet chemistry method and were coupled with a sulfur/multi-walled carbon nanotube (S/MWCNT) composite cathode. The cell with this configuration showed a good cycle life at a high current rate ascribed to (a) a strong interaction between the polysulfides and ZnO nanowires grown on conductive substrates; (b) fast electron transfer and (c) an optimized ion diffusion path from a well-organized nanoarchitecture. A praline-like flexible interlayer consisting of titanium oxide (TiO2) nanoparticles and carbon (C) nanofiber was further prepared in-situ using an electrospinning method, which allows the chemical adsorption of polysulfides throughout a robust conductive film. A significant enhancement in cycle stability and rate capability was achieved by incorporating this interlayer with a composite cathode of S/MWCNT. These results herald a new approach to building functional interlayers by integrating metal oxides with conductive frameworks. The derivatives of the TiO2/C interlayer was synthesized by changing the precursor concentration and carbonization temperature. Finally, a dual-interlayer was fabricated by simply coating titanium nitride (TiN) nanoparticles onto an electro-spun carbon nanofiber mat, which was then sandwiched with a sulfur/assembled Ketjen Black (KB) composite cathode with an ultra-high sulfur loading. The conductive polar TiN nanoparticles not only have a strong chemical affinity to polysulfides through a specific sulfur-nitrogen bond but also improve the reaction kinetics of the cell by catalyzing the conversion of the long-chain polysulfides to lithium sulfide. Besides, carbon nanofiber mat ensures mechanical robustness to TiN layer and acts as a physical barrier to block polysulfides diffusion. The incorporation of dual interlayers with sulfur cathodes offers a commercially feasible approach to improving the performance of Li-S batteries.
5

Plasma and ion beam enhanced chemical vapour deposition of diamond and diamond-like carbon

Tang, Yongji 27 August 2010
WC-Co cutting tools are widely used in the machining industry. The application of diamond coatings on the surfaces of the tools would prolong the cutting lifetime and improves the manufacturing efficiency. However, direct chemical vapor deposition (CVD) of diamond coatings on WC-Co suffer from severe premature adhesion failure due to interfacial graphitization induced by the binder phase Co. In this research, a combination of hydrochloric acid (HCl) and hydrogen (H2) plasma pretreatments and a novel double interlayer of carbide forming element (CFE)/Al were developed to enhance diamond nucleation and adhesion. The results showed that both the pretreatments and interlayers were effective in forming continuous and adhesive nanocrystalline diamond coatings. The method is a promising replacement of the hazardous Murakami's regent currently used in WC-Co pretreatment with a more environmental friendly approach.<p> Apart from coatings, diamond can be fabricated into other forms of nanostructures, such as nanotips. In this work, it was demonstrated that oriented diamond nanotip arrays can be fabricated by ion beam etching of as-grown CVD diamond. The orientation of diamond nanotips can be controlled by adjusting the direction of incident ion beam. This method overcomes the limits of other techniques in producing nanotip arrays on large areas with controlled orientation. Oriented diamond nano-tip arrays have been used to produce anisotropic frictional surface, which is successfully used in ultra-precision positioning systems.<p> Diamond-like carbon (DLC) has many properties comparable to diamond. In this thesis, the preparation of á-C:H thin films by end-Hall (EH) ion source and the effects of ion energy and nitrogen doping on the microstructure and mechanical properties of the as-deposited thin films were investigated. The results have demonstrated that smooth and uniform á-C:H and á-C:H:N films with large area and reasonably high hardness and Youngs modulus can be synthesized by EH ion source with a low ion energy. The EH ion beam deposition of carbon-based thin films have potential applications such as protective coatings on high capacity magnetic memory disk, for which coating uniformity and smoothness cannot be achieved by the traditional sputtering methods.
6

Plasma and ion beam enhanced chemical vapour deposition of diamond and diamond-like carbon

Tang, Yongji 27 August 2010 (has links)
WC-Co cutting tools are widely used in the machining industry. The application of diamond coatings on the surfaces of the tools would prolong the cutting lifetime and improves the manufacturing efficiency. However, direct chemical vapor deposition (CVD) of diamond coatings on WC-Co suffer from severe premature adhesion failure due to interfacial graphitization induced by the binder phase Co. In this research, a combination of hydrochloric acid (HCl) and hydrogen (H2) plasma pretreatments and a novel double interlayer of carbide forming element (CFE)/Al were developed to enhance diamond nucleation and adhesion. The results showed that both the pretreatments and interlayers were effective in forming continuous and adhesive nanocrystalline diamond coatings. The method is a promising replacement of the hazardous Murakami's regent currently used in WC-Co pretreatment with a more environmental friendly approach.<p> Apart from coatings, diamond can be fabricated into other forms of nanostructures, such as nanotips. In this work, it was demonstrated that oriented diamond nanotip arrays can be fabricated by ion beam etching of as-grown CVD diamond. The orientation of diamond nanotips can be controlled by adjusting the direction of incident ion beam. This method overcomes the limits of other techniques in producing nanotip arrays on large areas with controlled orientation. Oriented diamond nano-tip arrays have been used to produce anisotropic frictional surface, which is successfully used in ultra-precision positioning systems.<p> Diamond-like carbon (DLC) has many properties comparable to diamond. In this thesis, the preparation of á-C:H thin films by end-Hall (EH) ion source and the effects of ion energy and nitrogen doping on the microstructure and mechanical properties of the as-deposited thin films were investigated. The results have demonstrated that smooth and uniform á-C:H and á-C:H:N films with large area and reasonably high hardness and Youngs modulus can be synthesized by EH ion source with a low ion energy. The EH ion beam deposition of carbon-based thin films have potential applications such as protective coatings on high capacity magnetic memory disk, for which coating uniformity and smoothness cannot be achieved by the traditional sputtering methods.
7

Comparative Analysis on Dissimilar Laser Welding of Ti6AL4V and Ni-Ti with Vanadium and Niobium Interlayer

Dahal, Saroj 02 May 2023 (has links)
No description available.
8

Resistance spot welding of aluminum-steel joints using interlayers to mitigate the formation of intermetallic compounds

Lara, Bryan E. January 2022 (has links)
No description available.

Page generated in 0.1668 seconds