Return to search

Learning Phantom Dose Distribution using Regression Artificial Neural Networks

Before a radiation treatment on a cancer patient can get accomplished the treatment planning system (TPS) needs to undergo a quality assurance (QA). The QA consists of a pre-treatment (PT-QA) on a synthetic phantom body. During the PT-QA, data is collected from the phantom detectors, a set of monitors (transmission detectors) and the angular state of the machine. The outcome of this thesis project is to investigate if it is possible to predict the radiation dose distribution on the phantom body based on the data from the transmission detectors and the angular state of the machine. The motive for this is that an accurate prediction model could remove the PT-QA from most of the patient treatments. Prediction difficulties lie in reducing the contaminated noise from the transmission detectors and correctly mapping the transmission data to the phantom. The task is solved by modeling an artificial neuron network (ANN), that uses a u-net architecture to reduce the noise and a novel model that maps the transmission values to the phantom based on the angular state. The results show a median relative dose deviation ~ 1%.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-380767
Date January 2019
CreatorsÅkesson, Mattias
PublisherUppsala universitet, Avdelningen för beräkningsvetenskap
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUPTEC F, 1401-5757 ; 19011

Page generated in 0.0023 seconds