There are many situations where a linguistic description of complex phenomena allows better assessments. It is well known that the assessment of water quality continues depending heavily upon subjective judgments and interpretation, despite the huge datasets available nowadays. In that sense, the aim of this study has been to introduce intelligent linguistic operations to analyze databases, and produce self interpretable water quality indicators, which tolerate both imprecision and linguistic uncertainty. Such imprecision typically reflects the ambiguity of human thinking when perceptions need to be expressed. Environmental management concepts such as: "water quality", "level of risk", or "ecological status" are ideally dealt with linguistic variables. In the present Thesis, the flexibility of computing with words offered by fuzzy logic has been considered in these management issues. Firstly, a multipurpose hierarchical water quality index has been designed with fuzzy reasoning. It integrates a wide set of indicators including: organic pollution, nutrients, pathogens, physicochemical macro-variables, and priority micro-contaminants. Likewise, the relative importance of the water quality indicators has been dealt with the analytic hierarchy process, a decision-aiding method. Secondly, a methodology based on a hybrid approach that combines fuzzy inference systems and artificial neural networks has been used to classify ecological status in surface waters according to the Water Framework Directive. This methodology has allowed dealing efficiently with the non-linearity and subjective nature of variables involved in this classification problem. The complexity of inference systems, the appropriate choice of linguistic rules, and the influence of the functions that transform numerical variables into linguistic variables have been studied. Thirdly, a concurrent neuro-fuzzy model based on screening ecological risk assessment has been developed. It has considered the presence of hazardous substances in rivers, and incorporates an innovative ranking and scoring system, based on a self-organizing map, to account for the likely ecological hazards posed by the presence of chemical substances in freshwater ecosystems. Hazard factors are combined with environmental concentrations within fuzzy inference systems to compute ecological risk potentials under linguistic uncertainty. The estimation of ecological risk potentials allows identifying those substances requiring stricter controls and further rigorous risk assessment. Likewise, the aggregation of ecological risk potentials, by means of empirical cumulative distribution functions, has allowed estimating changes in water quality over time. The neuro-fuzzy approach has been validated by comparison with biological monitoring. Finally, a hierarchical fuzzy inference system to deal with sediment based ecological risk assessment has been designed. The study was centered in sediments, since they produce complementary findings to water quality analysis, especially when temporal trends are required. Results from chemical and eco-toxicological analyses have been used as inputs to two parallel inference systems which assess levels of contamination and toxicity, respectively. Results from both inference engines are then treated in a third inference engine which provides a final risk characterization, where the risk is provided in linguistic terms, with their respective degrees of certitude. Inputs to the risk system have been the levels of potentially toxic substances, mainly metals and chlorinated organic compounds, and the toxicity measured with a screening test which uses the photo-luminescent bacteria Vibrio fischeri. The Ebro river basin has been selected as case study, although the methodologies here explained can easily be applied to other rivers. In conclusion, this study has broadly demonstrated that the design of water quality indexes, based on fuzzy logic, emerges as suitable and alternative tool to support decision makers involved in effective sustainable river basin management plans. / Existen diversas situaciones en las cuales la descripción en términos lingüísticos de fenómenos complejos permite mejores resultados. A pesar de los volúmenes de información cuantitativa que se manejan actualmente, es bien sabido que la gestión de la calidad del agua todavía obedece a juicios subjetivos y de interpretación de los expertos. Por tanto, el reto en este trabajo ha sido la introducción de operaciones lógicas que computen con palabras durante el análisis de los datos, para la elaboración de indicadores auto-interpretables de calidad del agua, que toleren la imprecisión e incertidumbre lingüística. Esta imprecisión típicamente refleja la ambigüedad del pensamiento humano para expresar percepciones. De allí que las variables lingüísticas se presenten como muy atractivas para el manejo de conceptos de la gestión medioambiental, como es el caso de la "calidad del agua", el "nivel de riesgo" o el "estado ecológico". Por tanto, en la presente Tesis, la flexibilidad de la lógica difusa para computar con palabras se ha adaptado a diversos tópicos en la gestión de la calidad del agua. Primero, se desarrolló un índice jerárquico multipropósito de calidad del agua que se obtuvo mediante razonamiento difuso. El índice integra un extenso grupo de indicadores que incluyen: contaminación orgánica, nutrientes, patógenos, variables macroscópicas, así como sustancias prioritarias micro-contaminantes. La importancia relativa de los indicadores al interior del sistema de inferencia se estimó con un método de análisis de decisiones, llamado proceso jerárquico analítico. En una segunda fase, se utilizó una metodología híbrida que combina los sistemas de inferencia difusos y las redes neuronales artificiales, conocida como neuro-fuzzy, para el estudio de la clasificación del estado ecológico de los ríos, de acuerdo con los lineamientos de la Directiva Marco de Aguas. Esta metodología permitió un manejo adecuado de la no-linealidad y naturaleza subjetiva de las variables involucradas en este problema clasificatorio. Con ella, se estudió la complejidad de los sistemas de inferencia, la selección apropiada de reglas lingüísticas y la influencia de las funciones que transforman las variables numéricas en lingüísticas. En una tercera fase, se desarrolló un modelo conceptual neuro-fuzzy concurrente basado en la metodología de evaluación de riesgo ecológico preliminar. Este modelo consideró la presencia de sustancias peligrosas en los ríos, e incorporó un mapa auto-organizativo para clasificar las sustancias químicas, en términos de su peligrosidad hacia los ecosistemas acuáticos. Con este modelo se estimaron potenciales de riesgo ecológico por combinación de factores de peligrosidad y de concentraciones de las sustancias químicas en el agua. Debido a la alta imprecisión e incertidumbre lingüística, estos potenciales se obtuvieron mediante sistemas de inferencia difusos, y se integraron por medio de distribuciones empíricas acumuladas, con las cuales se pueden analizar cambios espacio-temporales en la calidad del agua. Finalmente, se diseñó un sistema jerárquico de inferencia difuso para la evaluación del riesgo ecológico en sedimentos de ribera. Este sistema estima los grados de contaminación, toxicidad y riesgo en los sedimentos en términos lingüísticos, con sus respectivos niveles de certeza. El sistema se alimenta con información proveniente de análisis químicos, que detectan la presencia de sustancias micro-contaminantes, y de ensayos eco-toxicológicos tipo "screening" que usan la bacteria Vibrio fischeri. Como caso de estudio se seleccionó la cuenca del río Ebro, aunque las metodologías aquí desarrolladas pueden aplicarse fácilmente a otros ríos. En conclusión, este trabajo demuestra ampliamente que el diseño y aplicación de indicadores de calidad de las aguas, basados en la metodología de la lógica difusa, constituyen una herramienta sencilla y útil para los tomadores de decisiones encargados de la gestión sostenible de las cuencas hidrográficas.
Identifer | oai:union.ndltd.org:TDX_URV/oai:www.tdx.cat:10803/8566 |
Date | 17 April 2008 |
Creators | Ocampo Duque, William Andrés |
Contributors | Schuhmacher Ansuategui, Marta, Universitat Rovira i Virgili. Departament d'Enginyeria Química |
Publisher | Universitat Rovira i Virgili |
Source Sets | Universitat Rovira i Virgili |
Language | English |
Detected Language | Spanish |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | application/pdf |
Source | TDX (Tesis Doctorals en Xarxa) |
Rights | info:eu-repo/semantics/openAccess, ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. |
Page generated in 0.0026 seconds