Spelling suggestions: "subject:"neurofuzzy lemsystems"" "subject:"neurofuzzy atemsystems""
1 |
[en] STRATEGIC GROUPS: ARESOURCE-BASED VIEW AND NEURO-FUZZY SYSTEMS APPROACH / [pt] IDENTIFICAÇÃO DE GRUPOS ESTRATÉGICOS: UMA ABORDAGEM UTILIZANDO A VISÃO RESOURCE-BASED E SISTEMAS NEURO-FUZZYCARLOS ALEXANDRE DOS SANTOS OLIVEIRA 03 January 2005 (has links)
[pt] Desde sua formulação, no início da década de setenta, o
conceito de grupo estratégico é objeto de pesquisas
teóricas e empíricas que buscam confirmar sua existência,
sua contribuição à avaliação da performance e à formação
das estratégias das empresas. Este trabalho soma-se a
estas pesquisas, utilizando os conceitos da Visão Resource-
Based e a aplicação de ferramentas de inteligência
computacional, neste caso as redes neurais e os sistemas
de inferência fuzzy, com o objetivo de contribuir para a
discussão deste tema na superação de suas limitações
e dos novos desafios que o aumento da complexidade das
arenas competitivas trouxeram para as pesquisas do
gerenciamento estratégico. A Visão Resource-Based fornece
a base teórica para o desenvolvimento dos construtos: grau
de inimitabilidade e grau de imobilidade, resultantes da
exploração estratégica dos recursos da empresa. Estes
construtos são propostos como dimensões de avaliação
da semelhança estratégica entre as empresas de uma arena
competitiva. A inteligência computacional fornece os meios
de extração de informações subjetivas, e presentes em
ambientes complexos, através da simulação do aprendizado,
percepção, evolução e adaptação do raciocínio humano. O
resultado é a proposição de um modelo de avaliação da
existência de grupos estratégicos, utilizando os
construtos Grau de Inimitabilidade e Grau de Imobilidade,
e Sistemas Neuro-fuzzy. Este modelo é aplicado ao setor de
supermercados como teste de validação do mesmo. / [en] Since its has introduced, in the beginning of the decade
of seventy, the concept of strategic groups is object of
theoretical and empirical research that aims to confirm
its existence, its contribution to performance evaluation
and the formulation of the strategies of the firms. This
text join these research, using the Resource-Based Views
framework and soft computing, in this case neural networks
and fuzzy inference systems, with aims at contributing for
the discussion of this subject to overcome its limitations
and the new challenges, resulting increasingly complexity
and competitive environment, for the strategic management
research. The Resource-Based View framework supplies the
theoretical underpinnings to use the inimitability degree
and immobility degree, resultants of the strategical
exploration of the resources of the firms, as constructors
to evaluate firm strategic similarity in a competitive
environment. Soft computing is a tool to extract
subjective data from complexity environments, simulating
the ability for learning, perception, evolution and
adaptation of human reasoning. The result of this research
is the proposal of a model to identify strategic groups,
applying the constructors Inimitability Degree and
Immobility Degree, and Neuro-fuzzy Inference Systems. To
validate the model, a test is performed to the
supermarkets industry.
|
2 |
On the development of decision-making systems based on fuzzy models to assess water quality in riversOcampo Duque, William Andrés 17 April 2008 (has links)
There are many situations where a linguistic description of complex phenomena allows better assessments. It is well known that the assessment of water quality continues depending heavily upon subjective judgments and interpretation, despite the huge datasets available nowadays. In that sense, the aim of this study has been to introduce intelligent linguistic operations to analyze databases, and produce self interpretable water quality indicators, which tolerate both imprecision and linguistic uncertainty. Such imprecision typically reflects the ambiguity of human thinking when perceptions need to be expressed. Environmental management concepts such as: "water quality", "level of risk", or "ecological status" are ideally dealt with linguistic variables. In the present Thesis, the flexibility of computing with words offered by fuzzy logic has been considered in these management issues. Firstly, a multipurpose hierarchical water quality index has been designed with fuzzy reasoning. It integrates a wide set of indicators including: organic pollution, nutrients, pathogens, physicochemical macro-variables, and priority micro-contaminants. Likewise, the relative importance of the water quality indicators has been dealt with the analytic hierarchy process, a decision-aiding method. Secondly, a methodology based on a hybrid approach that combines fuzzy inference systems and artificial neural networks has been used to classify ecological status in surface waters according to the Water Framework Directive. This methodology has allowed dealing efficiently with the non-linearity and subjective nature of variables involved in this classification problem. The complexity of inference systems, the appropriate choice of linguistic rules, and the influence of the functions that transform numerical variables into linguistic variables have been studied. Thirdly, a concurrent neuro-fuzzy model based on screening ecological risk assessment has been developed. It has considered the presence of hazardous substances in rivers, and incorporates an innovative ranking and scoring system, based on a self-organizing map, to account for the likely ecological hazards posed by the presence of chemical substances in freshwater ecosystems. Hazard factors are combined with environmental concentrations within fuzzy inference systems to compute ecological risk potentials under linguistic uncertainty. The estimation of ecological risk potentials allows identifying those substances requiring stricter controls and further rigorous risk assessment. Likewise, the aggregation of ecological risk potentials, by means of empirical cumulative distribution functions, has allowed estimating changes in water quality over time. The neuro-fuzzy approach has been validated by comparison with biological monitoring. Finally, a hierarchical fuzzy inference system to deal with sediment based ecological risk assessment has been designed. The study was centered in sediments, since they produce complementary findings to water quality analysis, especially when temporal trends are required. Results from chemical and eco-toxicological analyses have been used as inputs to two parallel inference systems which assess levels of contamination and toxicity, respectively. Results from both inference engines are then treated in a third inference engine which provides a final risk characterization, where the risk is provided in linguistic terms, with their respective degrees of certitude. Inputs to the risk system have been the levels of potentially toxic substances, mainly metals and chlorinated organic compounds, and the toxicity measured with a screening test which uses the photo-luminescent bacteria Vibrio fischeri. The Ebro river basin has been selected as case study, although the methodologies here explained can easily be applied to other rivers. In conclusion, this study has broadly demonstrated that the design of water quality indexes, based on fuzzy logic, emerges as suitable and alternative tool to support decision makers involved in effective sustainable river basin management plans. / Existen diversas situaciones en las cuales la descripción en términos lingüísticos de fenómenos complejos permite mejores resultados. A pesar de los volúmenes de información cuantitativa que se manejan actualmente, es bien sabido que la gestión de la calidad del agua todavía obedece a juicios subjetivos y de interpretación de los expertos. Por tanto, el reto en este trabajo ha sido la introducción de operaciones lógicas que computen con palabras durante el análisis de los datos, para la elaboración de indicadores auto-interpretables de calidad del agua, que toleren la imprecisión e incertidumbre lingüística. Esta imprecisión típicamente refleja la ambigüedad del pensamiento humano para expresar percepciones. De allí que las variables lingüísticas se presenten como muy atractivas para el manejo de conceptos de la gestión medioambiental, como es el caso de la "calidad del agua", el "nivel de riesgo" o el "estado ecológico". Por tanto, en la presente Tesis, la flexibilidad de la lógica difusa para computar con palabras se ha adaptado a diversos tópicos en la gestión de la calidad del agua. Primero, se desarrolló un índice jerárquico multipropósito de calidad del agua que se obtuvo mediante razonamiento difuso. El índice integra un extenso grupo de indicadores que incluyen: contaminación orgánica, nutrientes, patógenos, variables macroscópicas, así como sustancias prioritarias micro-contaminantes. La importancia relativa de los indicadores al interior del sistema de inferencia se estimó con un método de análisis de decisiones, llamado proceso jerárquico analítico. En una segunda fase, se utilizó una metodología híbrida que combina los sistemas de inferencia difusos y las redes neuronales artificiales, conocida como neuro-fuzzy, para el estudio de la clasificación del estado ecológico de los ríos, de acuerdo con los lineamientos de la Directiva Marco de Aguas. Esta metodología permitió un manejo adecuado de la no-linealidad y naturaleza subjetiva de las variables involucradas en este problema clasificatorio. Con ella, se estudió la complejidad de los sistemas de inferencia, la selección apropiada de reglas lingüísticas y la influencia de las funciones que transforman las variables numéricas en lingüísticas. En una tercera fase, se desarrolló un modelo conceptual neuro-fuzzy concurrente basado en la metodología de evaluación de riesgo ecológico preliminar. Este modelo consideró la presencia de sustancias peligrosas en los ríos, e incorporó un mapa auto-organizativo para clasificar las sustancias químicas, en términos de su peligrosidad hacia los ecosistemas acuáticos. Con este modelo se estimaron potenciales de riesgo ecológico por combinación de factores de peligrosidad y de concentraciones de las sustancias químicas en el agua. Debido a la alta imprecisión e incertidumbre lingüística, estos potenciales se obtuvieron mediante sistemas de inferencia difusos, y se integraron por medio de distribuciones empíricas acumuladas, con las cuales se pueden analizar cambios espacio-temporales en la calidad del agua. Finalmente, se diseñó un sistema jerárquico de inferencia difuso para la evaluación del riesgo ecológico en sedimentos de ribera. Este sistema estima los grados de contaminación, toxicidad y riesgo en los sedimentos en términos lingüísticos, con sus respectivos niveles de certeza. El sistema se alimenta con información proveniente de análisis químicos, que detectan la presencia de sustancias micro-contaminantes, y de ensayos eco-toxicológicos tipo "screening" que usan la bacteria Vibrio fischeri. Como caso de estudio se seleccionó la cuenca del río Ebro, aunque las metodologías aquí desarrolladas pueden aplicarse fácilmente a otros ríos. En conclusión, este trabajo demuestra ampliamente que el diseño y aplicación de indicadores de calidad de las aguas, basados en la metodología de la lógica difusa, constituyen una herramienta sencilla y útil para los tomadores de decisiones encargados de la gestión sostenible de las cuencas hidrográficas.
|
3 |
A Control System Using Behavior Hierarchies And Neuro-fuzzy ApproachArslan, Dilek 01 January 2005 (has links) (PDF)
In agent based systems, especially in autonomous mobile robots, modelling the environment and its changes is a source of problems. It is not always possible to effectively model the uncertainity and the dynamic changes in complex, real-world domains. Control systems must be robust to changes and must be able to handle these uncertainties to overcome this problem. In this study, a reactive behaviour based agent control system is modelled and implemented. The control system is tested in a navigation task using an environment, which has randomly placed obstacles and a goal position to simulate an environment similar to an autonomous robot&rsquo / s indoor environment. Then the control system was extended to control an agent in a multi-agent environment. The main motivation of this study is to design a control system which is robust to errors and easy to modify. Behaviour based approach with the advantages of fuzzy reasoning systems is used in the system.
|
4 |
[en] HIBRID NEURO-FUZZY-GENETIC SYSTEM FOR AUTOMATIC DATA MINING / [pt] SISTEMA HÍBRIDO NEURO-FUZZY-GENÉTICO PARA MINERAÇÃO AUTOMÁTICA DE DADOSMANOEL ROBERTO AGUIRRE DE ALMEIDA 20 August 2004 (has links)
[pt] Esta dissertação apresenta a proposta e o desenvolvimento
de um sistema
de mineração de dados inteiramente automático. O objetivo
principal é criar um
sistema que seja capaz de realizar a extração de
informações obscuras a partir
de bases de dados complexas, sem exigir a presença de um
especialista técnico
para configurá-lo. O sistema híbrido neuro-fuzzy
hierárquico com
particionamento binário (NFHB) vem apresentando excelentes
resultados em
tarefas de classificação de padrões e previsão, além de
possuir importantes
características não encontradas em outros sistemas
similares, entre elas:
aprendizado automático de sua estrutura; capacidade de
receber um número
maior de entradas abrangendo um maior número de aplicações;
e geração de
regras lingüísticas como produto de seu treinamento.
Entretanto, este modelo
ainda necessita de uma complexa parametrização inicial
antes de seu
treinamento, impedindo que o processo seja automático em
sua totalidade. O
novo modelo proposto busca otimizar a parametrização do
sistema NFHB
utilizando a técnica de coevolução genética, criando assim
um novo sistema de
mineração de dados completamente automático. O trabalho foi
realizado em
quatro partes principais: avaliação de sistemas existentes
utilizados na
mineração de dados; estudo do sistema NFHB e a determinação
de seus
principais parâmetros; desenvolvimento do sistema híbrido
neuro-fuzzy-genético
automático para mineração de dados; e o estudo de casos.
No estudo dos sistemas existentes para mineração de dados
buscou-se
encontrar algum modelo que apresentasse bons resultados e
ainda fosse
passível de automatização. Várias técnicas foram estudadas,
entre elas:
Métodos Estatísticos, Árvores de Decisão, Associação de
Regras, Algoritmos
Genéticos, Redes Neurais Artificiais, Sistemas Fuzzy e
Sistemas Neuro-Fuzzy.
O sistema NFHB foi escolhido como sistema de inferência e
extração de regras
para a realização da mineração de dados. Deste modo, este
modelo foi estudado
e seus parâmetros mais importantes foram determinados. Além
disso, técnicas
de seleção de variáveis de entradas foram investigadas para
servirem como
opções para o modelo. Ao final, foi obtido um conjunto de
parâmetros que deve
ser automaticamente determinado para a completa
configuração deste sistema. Um modelo coevolutivo genético
hierárquico foi criado para realizar com
excelência a tarefa de otimização do sistema NFHB. Desta
forma, foi modelada
uma arquitetura hierárquica de Algoritmos Genéticos (AG s),
onde os mesmos
realizam tarefas de otimização complementares. Nesta etapa,
também foram
determinados os melhores operadores genéticos, a
parametrização dos AG s, a
melhor representação dos cromossomas e as funções de
avaliação. O melhor
conjunto de parâmetros encontrado é utilizado na
configuração do NFHB,
tornando o processo inteiramente automático.
No estudo de casos, vários testes foram realizados em bases
de dados
reais e do tipo benchmark. Para problemas de previsão,
foram utilizadas séries
de carga de energia elétrica de seis empresas: Cerj, Copel,
Eletropaulo, Cemig,
Furnas e Light. Na área de classificação de padrões, foram
utilizadas bases
conhecidas de vários artigos da área como Glass Data, Wine
Data, Bupa Liver
Disorders e Pima Indian Diabetes. Após a realização dos
testes, foi feita uma
comparação com os resultados obtidos por vários algoritmos
e pelo NFHB
original, porém com parâmetros determinados por um
especialista.
Os testes mostraram que o modelo criado obteve resultados
bastante
satisfatórios, pois foi possível, com um processo
completamente automático,
obter taxas de erro semelhantes às obtidas por um
especialista, e em alguns
casos taxas menores. Desta forma, um usuário do sistema,
sem qualquer
conhecimento técnico sobre os modelos utilizados, pode
utilizá-lo para realizar mineração de banco de dados, extraindo informações e até mesmo conhecimento que podem auxiliá-lo em processos de tomada de decisão, o qual é o objetivo final de um processo de Knowledge Data Discovery. / [en] This dissertation presents the proposal and the development
of a totally
automatic data mining system. The main objective is to
create a system that is
capable of extracting obscure information from complex
databases, without
demanding the presence of a technical specialist to
configure it. The Hierarchical
Neuro-Fuzzy Binary Space Partitioning model (NFHB) has
produced excellent
results in pattern classification and time series
forecasting tasks. Additionally, it
provides important features that are not present in other
similar systems, such
as: automatic learning of its structure; ability to deal
with a larger number of input
variables, thus increasing the range of possible
applications; and generation of
linguistic rules as a result of its training process.
However, this model depends on
a complex configuration process before the training is
performed, hindering to
achieve a totally automatic system. The model proposed in
this Dissertation tries
to optimize the NFHB system parameters by using the genetic
coevolution
technique, thus creating a new automatic data mining
system. This work
consisted of four main parts: evaluation of existing
systems used in data mining;
study of the NFHB system and definition of its main
parameters; development of
the automatic hybrid neuro-fuzzy-genetic system for data
mining; and case
studies.
In the study of existing data mining systems, the aim was
to find a suitable
model that could yield good results and still be automated.
Several techniques
have been studied, among them: Statistical methods,
Decision Trees, Rules
Association, Genetic Algorithms, Artificial Neural
Networks, Fuzzy and Neuro-
Fuzzy Systems. The NFHB System was chosen for inference and
rule extraction
in the data mining process. In this way, this model was
carefully studied and its
most important parameters were determined. Moreover, input
variable selection
techniques were investigated, to be used with the proposed
model. Finally, a set
of parameters was defined, which must be determined
automatically for the
complete system configuration.
A hierarchical coevolutive genetic model was created to
execute the
system optimization task with efficiency. Therefore, a
hierarchical architecture of genetic algorithms (GAs) was
created, where the GAs execute complementary
optimization tasks. In this stage, the best genetic
operators, the GAs
configuration, the chromossomes representation, and
evaluation functions were
also determined. The best set of parameters found was used
in the NFHB
configuration, making the process entirely automatic.
In the case studies, various tests were performed with
benchmark
databases. For forecasting problems, six electric load
series were used: Cerj,
Copel, Eletropaulo, Cemig, Furnas and Light. In the pattern
classification area,
some well known databases were used, namely Glass Data,
Wine Data, Bupa
Liver Disorders and Pima Indian Diabetes. After the tests
were carried out, a
comparison was made with known models and with the original
NFHB System,
configured by a specialist.
The tests have demonstrated that the proposed model
generates
satisfactory results, producing, with an automatic process,
similar errors to the
ones obtained with a specialist configuration, and, in some
cases, even better
results can be obtained. Therefore, a user without any
technical knowledge of the
system, can use it to perform data mining, extracting
information and knowledge
that can help him/her in decision taking processes, which
is the final objective of
a Knowledge Data Discovery process.
|
5 |
[en] HIERARCHICAL NEURO-FUZZY MODELS / [pt] MODELOS NEURO-FUZZY HIERÁRQUICOSFLAVIO JOAQUIM DE SOUZA 13 December 2005 (has links)
[pt] Esta dissertação apresenta uma nova proposta de sistemas
(modelos) neuro-fuzzy que possuem, além do tradicional
aprendizado dos parâmetros, comuns às redes neurais e aos
sistemas nero-fuzzy, as seguintes características:
aprendizado de estrutura, a partir do uso de
particionamentos recursisvos; número maior de entradas que
o comumente encontrado nos sistemas neuro-fuzzy; e regras
com hierarquia. A definição da estrutura é uma necessidade
que surge quando da implementação de um determinado
modelo. Pode-se citar o caso das redes neurais, em que se
deve determinar (ou arbitrar) a priori sua estrutura
(número de camadas e quantidade de neurônios por camadas)
antes de qualquer teste. Um método automático de
aprendizado da estrutura é, portanto, uma característica
importante em qualquer modelo. Um sistema que também
permita o uso de um número maior de entradas é
interessante para se abranger um maior número de
aplicações. As regras com hierarquia são um subproduto do
método de aprendizado de estrutura desenvolvido nestes
novos modelos.
O trabalho envolveu três partes principais: um
levantamento sobre os sistemas neuro-fuzzy existentes e
sobre os métodos mais comuns de ajuste de parâmetros; a
definição e implementação de dois modelos neuro-fuzzy
hierárquicos; e o estudo de casos.
No estudo sobre os sistemas neuro-fuzzy(SNF) fez-se um
levantamento na bibliografia da área sobre as
características principais desses sistemas, incluindo suas
virtudes e deficiências. Este estudo gerou a proposta de
uma taxonomia para os SNF, em função das características
fuzzy neurais. Em virtude deste estudo constataram-se
limitações quanto à capacidade de criação de sua própria
estrutura e quanto ao número reduzido de entradas
possíveis.
No que se refere aos métodos de ajuste dos parâmetros
abordou-se os métodos mais comuns utilizados nos SNF, a
saber: o método dos mínimos quadrados com sua solução
através de métodos numéricos iterativos; e o método
gradient descent e seus derivados como o BackPropagation e
o RProp(Resilient BackPropagation).
A definição dos dois novos modelos neuro-fuzzy foi feita a
partir do estudo das características desejáveis e das
limitações dos SNF até então desenvolvidos. Observou-se
que a base de regras dos SNF juntamente com os seus
formatos de particionamento dos espaços de entrada e saída
têm grande influência sobre o desempenho e as limitações
destes modelos. Assim sendo, decidiu-se utilizar uma nova
forma de particionamento que eliminasse ou reduzisse as
limitações existentes- os particionamentos recursivos.
Optou-se pelo uso dos particionamentos Quadtree e BSP,
gerando os dois modelos NFHQ (Neuro-Fuzzy Hierárquico
Quadree) e NFHB (Neiro-Fuzzy Hierárquico BSP). Com o uso
de particionamentos obteve-se um nova classe de SNF que
permitiu além do aprendizado dos parâmetros, também o
aprendizado dos parâmetros. Isto representa um grande
diferencial em relação aos SNF tradicionais, além do fato
de se conseguir extender o limite do número de entradas
possíveis para estes sistemas.
No estudo de casos, os dois modelos neurofuzzy
hierárquicos foram testados 16 casos diferentes, entre as
aplicações benchmarks mais tradicionais da área e
problemas com maior número de entradas. Entre os casos
estudados estão: o conjunto de dados IRIS; o problema das
duas espirais; a previsão da série caótica de Mackey-
Glass; alguns sistemas de diagnóstico e classificação
gerados a partir de conjuntos de dados comumente
utilizados em artigos de machine learning e uma aplicação
de previsão de carga elétrica. A implementação dos dois
novos modelos neuro-fuzzy foi efetuada em linguagem pascal
e com o uso de um compilador de 32 bits para micros da
linha PC (Pentium) com sistema operacional DOS 32 bits,
Windows, ou Linux.
Os testes efetuados demostraram que: esses novos modelos
se ajustam bem a qualquer conjunto de dados; geram sua
própria estrutura; ajustam seus parâmetros com boa
generalização e extraem / [en] This dissertation presents a new proposal of neurofuzzy
systems (models), which present, in addition to the
learning capacity (which are common to the neural networks
and neurofuzzy systems) the following features: learning
of the structure; the use of recursive partitioning; a
greater number of inputs than usually allowed in
neurofuzzy systems; and hierarchical rules. The
structure´s definition is needed when implementing a
certain model. In the neural network case, for example,
one must, first of all, estabilish its structure (number
of layers and number of neurons per layers) before any
test is performed. So, an important feature for any model
is the existence of an automatic learning method for
creating its structure. A system that allows a larger
number of inputs is also important, in order to extend the
range of possible applications. The hierarchical rules
feature results from the structure learning method
developed for these two models.
The work has involved three main parts: study of the
existing neurofuzzy systems and of the most commom methods
to adjust its parameters; definition and implementation of
two hierarchical neurofuzzy models; and case studies.
The study of neurofuzzy systems (NFS) was accomplished by
creating a survey on this area, including advantages,
drawbacks and the main features of NFS. A taxonomy about
NFS was then proposed, taking into account the neural and
fuzzy features of the existing systems. This study pointed
out the limitations of neurofuzzy systems, mainly their
poor capability of creating its own structure and the
reduced number of allowed inputs.
The study of the methods for parameter adjustment has
focused on the following algorithms: Least Square
estimator (LSE) and its solutions by numerical iterative
methods; and the basic gradient descent method and its
offsprings such as Backpropagation and Rprop (Resilient
Backpropagation).
The definition of two new neurofuzzy models was
accomplished by considering desirable features and
limitations of the existing NFS. It was observed that the
partitioning formats and rule basis of the NFS have great
influence on its performance and limitations. Thus, the
decision to use a new partitioning method to remove or
reduce the existing limitations - the recursive
partitioning. The Quadtree and BSP partitioning were then
adopted, generating the so called Quadree Hierarchical
Neurofuzzy model (NFHQ) and the BSP hierarchical
Neurofuzzy model (NFHB). By using these kind os
partitioning a new class of NFS was obtained allowing the
learning of the structure in addition to parameter
learning. This Feature represents a great differential in
relation to the traditional NFS, besides overcoming the
limitation in the number of allowed inputs.
In the case studies, the two neurofuzzy models were tested
in 16 differents cases, such as traditional benchmarks and
problems with a greater number of inputs. Among the cases
studied are: the IRIS DATA set; the two spirals problem;
the forecasting of Mackey-Glass chaotic time series; some
diagnosis and classifications problems, found in papers
about machine learning; and a real application involving
load forecasting. The implementation of the two new
neurofuzzy models was carried out using a 32 bit Pascal
compiler for PC microcomputers using DOS or Linux
operating system.
The tests have shown that: these new models are able to
adjust well any data sets; they create its own struture;
they adjust its parameters, presenting a good
generalization performance; and automatically extract the
fuzzy rules. Beyond that, applications with a greater
number of inputs for these neurofuzzy models. In short two
neurofuzzy models were developed with the capability of
structure learning, in addition to parameter learning.
Moreover, these new models have good interpretability
through hierarchical fuzzy rules. They are not black coxes
as the neural networks.
|
6 |
Upravljanje performansama redova čekanja u poštanskom saobraćaju / Management queues performances in postal trafficJovanović Bojan 30 September 2015 (has links)
<p>U doktorskoj disertaciji rešavaju se sledeći problemi: problem opisivanja sistema masovnog opsluživanja kada teorija masovnog opsluživanja nailazi na ograničenja primene, problem predviđanja vremena čekanja, problem modelovanja odnosa na tržištu ekspres usluga kao izvora uticaja na redove čekanja, problem upravljanja brojem aktivnih kanala sistema masovnog opsluživanja i problem uticaja na subjektivno vreme čekanja. Primenom elemenata veštačke inteligencije i statističkih metoda razvijen je model za predviđanje parametra vremena čekanja u realnom vremenu pri jedinicama poštanske mreže za pružanje usluga korisnicima.</p> / <p>The dissertation provides answers to the following issues: the problem of describing the queueing system when the queueing theory encounters limitations in its use, predicting the waiting time, the problem of modeling relations in the market of express services as a source of influence on the queues, managing the number of active channels in the queueing systems and the impact on subjective waiting time. Through application of artificial intelligence and statistical methods, a model has been developed which in real time predicts the parameters of waiting time at the units of postal network that provide service to customers.</p>
|
7 |
Avaliação da adequabilidade de redes neurais artificiais e sistemas neuro-fuzzy no apoio à predição de desempenho de cadeias de suprimento baseada no SCOR® / Evaluation of the adequability of artificial neural network and neuro-fuzzy systems to deal with supply chain performance prediction based on SCOR®Lima Junior, Francisco Rodrigues 02 December 2016 (has links)
Sistemas de predição de desempenho de cadeias de suprimento são constituídos por indicadores que visam estimar o desempenho da empresa-foco em decorrência também do desempenho dos indicadores dos fornecedores. Na literatura são encontrados apenas dois modelos quantitativos (GANGA; CARPINETTI, 2011; AGAMI; SALEH; RASMY, 2014) que permitem predizer o desempenho de cadeias de suprimento usando os indicadores do modelo SCOR® (Supply Chain Operations Reference). Uma limitação de ambos modelos é a dificuldade de se ajustar ao ambiente de uso, uma vez que sua implementação e atualização requerem a parametrização manual de muitas regras de decisão. Tanto o uso de redes neurais quanto de sistemas neuro-fuzzy têm o potencial de contornar essa dificuldade por utilizarem um mecanismo de aprendizagem que possibilita a adaptação ao ambiente de uso usando dados numéricos. Todavia, na literatura não são encontradas aplicações dessas técnicas no apoio à predição de desempenho de cadeias de suprimento, tampouco estudos que discutam qual dessas técnicas se mostra mais adequada para lidar com este problema. Diante disso, o objetivo desta pesquisa é construir e a avaliar a adequabilidade de dois sistemas de predição de desempenho, ambos baseados nos indicadores do modelo SCOR®, mas usando alternativamente as técnicas redes neurais e sistemas neuro-fuzzy, para apoiar a gestão de desempenho da empresa-foco e de sua cadeia imediata. A execução desta pesquisa envolveu o uso de simulação computacional e de testes estatísticos. Os resultados mostram que, embora ambas as técnicas apresentem capacidade de predição satisfatória, as redes neurais são mais adequadas em relação à complexidade da definição da configuração topológica, enquanto os sistemas neuro-fuzzy se sobressaíram em relação à capacidade de predição, complexidade do treinamento, quantidade de variáveis de entrada, suporte à tomada de decisão sob incerteza e interpretabilidade dos dados. Outros resultados desta pesquisa estão relacionados à identificação de particularidades do processo de modelagem das técnicas avaliadas, à elaboração de um panorama sobre o uso de técnicas quantitativas na avaliação de desempenho de cadeias de suprimento e à identificação de algumas oportunidades de pesquisa. / Supply chain performance prediction systems are composed by indicators that aim to estimate the performance of a focal company considering also indicators related to their suppliers. There are two quantitative models in the literature (GANGA; CARPINETTI, 2011; AGAMI; SALEH; RASMY, 2014) that enable to predict the supply chain performance using the indicators proposed by the SCOR® model (Supply Chain Operations Reference). Nevertheless, there is a drawback of both models that refers to the difficulty in adapting to the environment of use, since implementation and updating of these models require parameterization of many decision rules that must be done by an expert. The application of artificial neural networks as well as neuro-fuzzy systems can overcome this drawback by using a learning mechanism that enables the adaptation to the environment of use using numerical data on supply chain performance. However, there are neither studies in the literature that propose the use of these techniques in order to support supply chain performance prediction nor studies that discuss which of these techniques seem to be more appropriate to deal with this problem. Thus, the objective of this study is to propose and evaluate the adequability of the two types of performance prediction systems based on the performance indicators of the SCOR® model, and both using alternatively artificial neural networks and neuro-fuzzy systems to support performance management of a focal company and their supply chain. The implementation of this research involved the use of computer simulation and statistical tests. The results show that although both techniques present a satisfactory predictive capacity, neural networks are more appropriate in relation to the complexity of defining the topological configuration, whereas the neuro-fuzzy systems are more adequate regarding the predictive capacity, complexity of the training, amount of input variables, support to decision-making under uncertainty and interpretability of data. Other results of this research refer to the identification of characteristics of the modeling process of the evaluated techniques, as well as to the review on the use of quantitative techniques for supply chain performance evaluation and to the identification of some research opportunities.
|
8 |
Avaliação da adequabilidade de redes neurais artificiais e sistemas neuro-fuzzy no apoio à predição de desempenho de cadeias de suprimento baseada no SCOR® / Evaluation of the adequability of artificial neural network and neuro-fuzzy systems to deal with supply chain performance prediction based on SCOR®Francisco Rodrigues Lima Junior 02 December 2016 (has links)
Sistemas de predição de desempenho de cadeias de suprimento são constituídos por indicadores que visam estimar o desempenho da empresa-foco em decorrência também do desempenho dos indicadores dos fornecedores. Na literatura são encontrados apenas dois modelos quantitativos (GANGA; CARPINETTI, 2011; AGAMI; SALEH; RASMY, 2014) que permitem predizer o desempenho de cadeias de suprimento usando os indicadores do modelo SCOR® (Supply Chain Operations Reference). Uma limitação de ambos modelos é a dificuldade de se ajustar ao ambiente de uso, uma vez que sua implementação e atualização requerem a parametrização manual de muitas regras de decisão. Tanto o uso de redes neurais quanto de sistemas neuro-fuzzy têm o potencial de contornar essa dificuldade por utilizarem um mecanismo de aprendizagem que possibilita a adaptação ao ambiente de uso usando dados numéricos. Todavia, na literatura não são encontradas aplicações dessas técnicas no apoio à predição de desempenho de cadeias de suprimento, tampouco estudos que discutam qual dessas técnicas se mostra mais adequada para lidar com este problema. Diante disso, o objetivo desta pesquisa é construir e a avaliar a adequabilidade de dois sistemas de predição de desempenho, ambos baseados nos indicadores do modelo SCOR®, mas usando alternativamente as técnicas redes neurais e sistemas neuro-fuzzy, para apoiar a gestão de desempenho da empresa-foco e de sua cadeia imediata. A execução desta pesquisa envolveu o uso de simulação computacional e de testes estatísticos. Os resultados mostram que, embora ambas as técnicas apresentem capacidade de predição satisfatória, as redes neurais são mais adequadas em relação à complexidade da definição da configuração topológica, enquanto os sistemas neuro-fuzzy se sobressaíram em relação à capacidade de predição, complexidade do treinamento, quantidade de variáveis de entrada, suporte à tomada de decisão sob incerteza e interpretabilidade dos dados. Outros resultados desta pesquisa estão relacionados à identificação de particularidades do processo de modelagem das técnicas avaliadas, à elaboração de um panorama sobre o uso de técnicas quantitativas na avaliação de desempenho de cadeias de suprimento e à identificação de algumas oportunidades de pesquisa. / Supply chain performance prediction systems are composed by indicators that aim to estimate the performance of a focal company considering also indicators related to their suppliers. There are two quantitative models in the literature (GANGA; CARPINETTI, 2011; AGAMI; SALEH; RASMY, 2014) that enable to predict the supply chain performance using the indicators proposed by the SCOR® model (Supply Chain Operations Reference). Nevertheless, there is a drawback of both models that refers to the difficulty in adapting to the environment of use, since implementation and updating of these models require parameterization of many decision rules that must be done by an expert. The application of artificial neural networks as well as neuro-fuzzy systems can overcome this drawback by using a learning mechanism that enables the adaptation to the environment of use using numerical data on supply chain performance. However, there are neither studies in the literature that propose the use of these techniques in order to support supply chain performance prediction nor studies that discuss which of these techniques seem to be more appropriate to deal with this problem. Thus, the objective of this study is to propose and evaluate the adequability of the two types of performance prediction systems based on the performance indicators of the SCOR® model, and both using alternatively artificial neural networks and neuro-fuzzy systems to support performance management of a focal company and their supply chain. The implementation of this research involved the use of computer simulation and statistical tests. The results show that although both techniques present a satisfactory predictive capacity, neural networks are more appropriate in relation to the complexity of defining the topological configuration, whereas the neuro-fuzzy systems are more adequate regarding the predictive capacity, complexity of the training, amount of input variables, support to decision-making under uncertainty and interpretability of data. Other results of this research refer to the identification of characteristics of the modeling process of the evaluated techniques, as well as to the review on the use of quantitative techniques for supply chain performance evaluation and to the identification of some research opportunities.
|
9 |
Neuroninių-neraiškiųjų tinklų naudojimas verslo taisyklių sistemose / Use of neuro-fuzzy networks with business rules enginesDmitrijev, Gintaras 09 July 2009 (has links)
Baigiamajame magistro darbe nagrinėjamos neraiškiųjų verslo taisyklių naudojimo informacinėse sistemose problemos, „minkštųjų skaičiavimų“ intelektinėse informacinėse sistemose problematika, neuroninių-neraiškiųjų sistemų principai. Išnagrinėti pagrindiniai neraiškiosios logikos dėsniai, kuriais remiantis naudojamos neraiskiosios verslo taisyklės intelektinėse informacinėse sistemose. Pateiktas būdas, kaip neuroninės-neraiškiosios sistemos gali būti naudojamos verslo taisyklių sistemose naudojant RuleML, taisyklių žymėjimo kalbos, standartą. Baigiamajame darbe aprašomas eksperimentas, atliktas naudojant Matlab aplinką, XMLBeans taikomąją programą ir autoriaus sukurta neraiškaus išvedimo sistemos perkelimo į RuleML formatą taikomąją programą. Išnagrinėjus teorinius ir praktinius neuroninių-neraiškiųjų sistemų naudojimo aspektus, pateikiamos baigiamojo darbo išvados ir siūlymai. Darbą sudaro 5 dalys: įvadas, analitinė-metodinė dalis, eksperimentinė-tiriamoji dalis, išvados ir siūlymai, literatūros sąrašas. Darbo apimtis – 58 p. teksto be priedų, 30 iliustr., 30 bibliografiniai šaltiniai. Atskirai pridedami darbo priedai. / This work investigates the problems of use of fuzzy business rules in information systems, „soft computing“ in intelligent information systems issues, neuro-fuzzy systems principles. Main fuzzy logic laws are considered, which are used as the basis of fuzzy business rules in intelligent information systems. Suggested an approach, based on RuleML standard, how neuro-fuzzy systems could be used together with business rules engines. This paper describes the experiment carried out using the Matlab environment, XMLBeans application and the author created application for fuzzy inference system migration to RuleML standard format. Structure: introduction, analysis , project, conclusions and suggestions, references. Thesis consist of: 58 p. text without appendixes, 30 pictures, 30 bibliographical entries. Appendixes included.
|
10 |
[en] NEURO-FUZZY BSP HIERARCHICAL SYSTEM FOR TIME FORECASTING AND FUZZY RULE EXTRACTION DOR DATA MINING APPLICATONS / [pt] SISTEMA NEURO-FUZZY HIERÁRQUICO BSP PARA PREVISÃO E EXTRAÇÃO DE REGRAS FUZZY EM APLICAÇÕES DE DATA MININGALBERTO IRIARTE LANAS 11 October 2005 (has links)
[pt] Esta dissertação investiga a utilização de um sistema
Neuro-Fuzzy Hierárquico para previsão de séries e a
extração de regras fuzzy em aplicações de Mineração de
Dados. O objetivo do trabalho foi estender o modelo Neuro-
Fuzzy Hierárquico BSP para a classificação de registros e
a previsão de séries temporais. O processo de
classificação de registros no contexto de Mineração de
Dados consiste na extração de regras de associação que
melhor caracterizem, através de sua acurácia e
abrangência, um determinado grupo de registros de um banco
de dados (BD). A previsão de séries temporais, outra
tarefa comum em Mineração de Dados tem como objetivo
prever o comportamento de uma série temporal no instante
t+k (k ? 1).O trabalho consistiu de 5 etapas principais:
elaborar um survey dos principais sistemas e modelos
mais utilizados nas aplicações de Mineração de Dados;
avaliar o desempenho do sistema NFHB original em
aplicações de Mineração de Dados; desenvolver uma extensão
do modelo NFHB dedicado à classificação de registros em
uma BD; desenvolver um novo modelo híbrido Neuro-Fuzzy
Genético para o ajuste automático dos parâmetros do
sistema dedicado a previsão de séries temporais; e o
estudo dos casos. O estudo da área resultou num survey
sobre os principais modelos para Mineração de Dados. São
apresentados os modelos mais utilizados em tarefas de
classificação e extração de regras tais como: redes
neurais, árvores de decisão crisp e fuzzy, algoritmos
genéticos, estatística e sistemas neuro-fuzzy. Na etapa de
avaliação do modelo NFHB original, foi verificado que além
do tradicional aprendizado dos parâmetros, comuns às redes
neurais e aos sistemas neuro-fuzzy, o modelo possui as
seguintes aracterísticas: aprendizado da estrutura, a
partir do uso de particionamentos recursivos; número maior
de entradas que o habitualmente encontrado nos sistemas
neuro-fuzzy; e regras com hierarquia, características
adequadas para as aplicações de Mineração de Dados.
Entretanto, o processo de extração de regras e a seleção
de atributos não são adequados para este tipo de
aplicação, assim como a excessiva complexidade da
parametrização do modelo para aplicações de previsão de
séries temporais. Uma extensão ao modelo NFHB original foi
então proposta para aplicações de classificação de
registros no contexto da Mineração de Dados onde se têm
como objetivo principal a extração de informação em forma
de regras interpretáveis. Foi necessário modificar a
seleção de atributos e o processo original de extração de
regras. O sistema fuzzy do tipo Takagi-Sugeno do modelo
NFHB original fornece regras inadequadas do ponto de vista
da Mineração de Dados. O novo modelo NFHB, dotado das
modificações necessárias, mostrou um ótimo desempenho na
extração de regras fuzzy válidas que descrevem a
informação contida no banco de dados. As medidas de
avaliação normalmente usadas para analisar regras crisp
(Se x1 é <14.3 e...), como abrangência e acurácia, foram
modificadas para poderem ser aplicadas ao caso de
avaliação das regras fuzzy (Se x1 é Baixo e..) extraídas
pelo sistema NFHB após da fase de aprendizado. A
quantidade e a qualidade das regras extraídas é um ponto
fundamental dos sistemas voltados para aplicações de
Mineração de Dados, que buscam sempre obter o menor número
de regras e da maior qualidade possível. Nesse sentido, o
processo de seleção das características de entrada foi
alterado para evitar particionamentos excessivos, ou seja
regras desnecessárias. Foram implementadas duas
estratégias de seleção (Fixa e Adaptativa) em função de
diferentes medidas de avaliação como a Entropia e o método
de Jang. Um novo modelo híbrido neuro-fuzzy genético para
previsão de séries temporais foi criado para resolver o
problema da excessiva complexidade de parametrização do
sistema, o qual conta com mais de 15 parâmetros.Foi
proposto um novo modelo híbrido neuro-fuzzy genético capaz
de evoluir e obter um conjunto de parâmetros adequado par / [en] This dissertation investigates the use of a Neuro-Fuzzy
Hierarchical system for time series forecasting and fuzzy
rule extraction for Data Mining applications. The
objective of this work was to extend the Neuro-Fuzzy BSP
Hierarchical model for the classification of registers and
time series forecasting. The process of classification of
registers in the Data Mining context consists of
extracting association rules that best characterise,
through its accuracy and coverage measures, a certain
group of registers of database (DB). The time series
forecasting other common task in Data Mining, has a main
objective to foresee the behavior of a time series in the
instant t+k (k>=1).
The work consisted of 5 main stages: to elaborate a survey
of the main systems and the most common models in Data
Mining applications; to evaluate the performance of the
original NFHB system in Data Mining applicatons; to
develop an extension of the NFHB model dedicated to the
classification of registers in a DB; to develop a new
Neuro-Fuzzy Genetic hybrid model for the automatic
adjustment of the parameters of the system for time series
forecasting applicatons; and the case estudies.
The study of the area resulted in a survey of the main
Data Mining models. The most common methods used in Data
Mining application are presented such as: neural nets,
crisp and fuzzy decision trees, genetic algorithms,
statistics and neuro-fuzzy systems.
In the stage of evaluation of the original NFHB model, it
verified that besides the traditional learning of the
parameters, common to the neural nets and the neuro-fuzzy
systems, the model possesses the following
characteristics: learning of the structure; recursive
partitioning; larger number of inputs than usually found
on the neuro-fuzzy systems; rule with hierarchy; which are
characteristics adapted for Data Mining applications.
However the rule extraction process and attributes
selection are not appropriate for this type of
applications, as well as the excessive complexity of the
tuning of the model for time series forecasting
applicatons.
An extension of the original NFHB model was then proposed
for applicatons of classification of registers in the Data
Mining context, where the main objective in the extraction
of information in form of interpratable rules. It was
necessary to modify the attributes selection and the
original rule extraction process. The Takagi-Sugeno fuzzy
system of the original NFHB model supplies inadequate
rules, from the Data Mining point of view. The new NFHB
models, endowed with necessary modifications, showed good
performance in extracting valid fuzzy rules that describe
the information contained in the database. The evaluation
metrics, usually used to analyse crips rules (If x1 is
<14.3 and), as coverage and accuracy, were modified to be
applied to the evaluation of the fuzzy rules (If x1 is Low
and) extracted from the NFHB system after the learning
process. The amount and quality of the extracted rules are
important points of the systems dedicated for Data Mining
applicatons, where the target is to obtain the smallest
number of rules and of the best quality. In that sense,
the input selection strategies were implemented (Static
and Adaptive), using different evaluation measures as
Entropy and the jang algorithm.
A new genetic neuro-fuzzy hybrid model for time series
forecasting was created to solve the problem of the
excessive complexity of the model tuning, which comprises
more than 15 parameters. A new model wes proposed, a
genetic neuro-fuzzy hybrid, model capable to develop and
to obtain an appropriate set of parameters for the
forecasting of time series. The new hybrid, model capable
to develop and to obtain an appropriate set of parameters
for the forecasting of time series. The new hybrid model
presented good results with different types of series.
A tool based on the NFHB model was developed for
classification and forecasting applications. Th
|
Page generated in 0.037 seconds