Return to search

Multiscale Computational Modeling of Epileptic Seizures : from macro to microscopic dynamics

L’évaluation expérimentale des mécanismes de l’initiation, de la propagation, et de la fin des crises d’épilepsie est un problème complexe. Cette thèse consiste en le développement d’un modèle de réseau de neurones aux caractéristiques biologiques pertinentes à la compréhension des mécanismes de genèse et de propagation de crises d’épilepsie. Nous démontrons que les décharges de type pointes ondes peuvent être générées par les neurones inhibiteurs seuls, tandis que les décharges rapides sont dues en grande partie aux neurones excitateurs. Nous concluons que les variations lentes d’excitabilité globale du système, dues aux fluctuations du milieu extracellulaire, et les interactions électro-tonique par jonctions communicantes sont les facteurs favorisant la genèse de crise localement, tandis qu’à plus large échelle spatiale les communications synaptiques excitatrices et le couplage extracellulaire qui participe davantage à la propagation des crises d’une région du cerveau à une autre. / This thesis consists in the development of a network model of spiking neurons and the systematic investigation of conditions under which the network displays the emergent dynamic behaviors known from the Epileptor, a well-investigated abstract model of epileptic neural activity. We find that exogenous fluctuations from extracellular environment and electro-tonic couplings between neurons play an essential role in seizure genesis. We demonstrate that spike-waves discharges, including interictal spikes, can be generated primarily by inhibitory neurons only, whereas excitatory neurons are responsible for the fast discharges during the wave part. We draw the conclusion that slow variations of global excitability, due to exogenous fluctuations from extracellular environment, and gap junction communication push the system into paroxysmal regimes locally, and excitatory synaptic and extracellular couplings participate in seizure spread globally across brain regions.

Identiferoai:union.ndltd.org:theses.fr/2015AIXM4023
Date27 May 2015
CreatorsNaze, Sebastien
ContributorsAix-Marseille, Jirsa, Viktor K.
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0038 seconds