Return to search

Métodos híbridos e livres de derivadas para resolução de sistemas não lineares / Hybrid derivative-free methods for nonlinear systems

Orientadores: Márcia Aparecida Gomes Ruggiero, Sandra Augusta Santos / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-21T10:21:10Z (GMT). No. of bitstreams: 1
Begiato_RodolfoGotardi_D.pdf: 3815627 bytes, checksum: 59584610cfd737a94e68dc5bf3735e25 (MD5)
Previous issue date: 2012 / Resumo: O objetivo desta tese é tratar da resolução de sistemas não lineares de grande porte, em que as funções são continuamente diferenciáveis, por meio de uma abordagem híbrida que utiliza um método iterativo com duas fases. A primeira fase consiste de versões sem derivadas do método do ponto fixo empregando parâmetros espectrais para determinar o tamanho do passo da direção residual. A segunda fase é constituída pelo método de Newton inexato em uma abordagem matrix-free, em que é acoplado o método GMRES para resolver o sistema linear que determina a nova direção de busca. O método híbrido combina ordenadamente as duas fases de forma que a segunda é acionada somente em caso de falha na primeira e, em ambas, uma condição de decréscimo não-monótono deve ser verificada para aceitação de novos pontos. Desenvolvemos ainda um segundo método, em que uma terceira fase de busca direta é acionada em situações em que o excesso de buscas lineares faz com que o tamanho de passo na direção do método de Newton inexato torne-se demasiadamente pequeno. São estabelecidos os resultados de convergência dos métodos propostos. O desempenho computacional é avaliado em uma série de testes numéricos com problemas tradicionalmente encontrados na literatura. Tanto a análise teórica quanto a numérica evidenciam a viabilidade das abordagens apresentadas neste trabalho / Abstract: This thesis handles large-scale nonlinear systems for which all the involved functions are continuously differentiable. They are solved by means of a hybrid approach based on an iterative method with two phases. The first phase is defined by derivative-free versions of a fixed-point method that employs spectral parameters to define the steplength along the residual direction. The second phase consists of a matrix-free inexact Newton method that employs the GMRES to solve the linear system that computes the search direction. The proposed hybrid method neatly combines the two phases in such a way that the second is called only in case the first one fails. To accept new points in both phases, a nonmonotone decrease condition upon a merit function has to be verified. A second method is developed as well, with a third phase based on direct search, that should act whenever too many line searches have excessively decreased the steplenght along the inexact- Newton direction. Convergence results for the proposed methods are established. The computational performance is assessed in a set of numerical experiments with problems from the literature. Both the theoretical and the experimental analysis corroborate the feasibility of the proposed strategies / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/305946
Date09 May 2012
CreatorsBegiato, Rodolfo Gotardi, 1980-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Santos, Sandra Augusta, 1964-, Ruggiero, Márcia Aparecida Gomes, 1956-, Ribeiro, Ademir Alves, Francisco, Juliano de Bem, Ehrhardt, Maria Aparecida Diniz, Martínez Pérez, José Mario
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática Aplicada
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Format119 p. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0031 seconds