Generic Hamiltonian systems have a mixed phase space, where classically disjoint regions of regular and chaotic motion coexist. For many applications it is useful to approximate the regular dynamics of such a mixed system H by an integrable approximation Hreg. We present a new, iterative method to construct such integrable approximations. The method is based on the construction of an integrable approximation in action representation which is then improved in phase space by iterative applications of canonical transformations. In contrast to other known approaches, our method remains applicable to strongly non-integrable systems H. We present its application to 2D maps and 2D billiards. Based on the obtained integrable approximations we finally discuss the theoretical description of dynamical tunneling in mixed systems. / Typische Hamiltonsche Systeme haben einen gemischten Phasenraum, in dem disjunkte Bereiche klassisch regulärer und chaotischer Dynamik koexistieren. Für viele Anwendungen ist es zweckmäßig, die reguläre Dynamik eines solchen gemischten Systems H durch eine integrable Näherung Hreg zu beschreiben. Wir stellen eine neue, iterative Methode vor, um solche integrablen Näherungen zu konstruieren. Diese Methode basiert auf der Konstruktion einer integrablen Näherung in Winkel-Wirkungs-Variablen, die im Phasenraum durch iterative Anwendungen kanonischer Transformationen verbessert wird. Im Gegensatz zu bisher bekannten Verfahren bleibt unsere Methode auch auf stark nichtintegrable Systeme H anwendbar. Wir demonstrieren sie anhand von 2D-Abbildungen und 2D-Billards. Mit den gewonnenen integrablen Näherungen diskutieren wir schließlich die theoretische Beschreibung von dynamischem Tunneln in gemischten Systemen.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-178216 |
Date | 09 September 2015 |
Creators | Löbner, Clemens |
Contributors | Technische Universität Dresden, Fakultät Mathematik und Naturwissenschaften, Prof. Dr. Roland Ketzmerick, Prof. Dr. Roland Ketzmerick, Prof. Dr. Peter Schlagheck |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0021 seconds