Return to search

Relation Classification using Semantically-Enhanced Syntactic Dependency Paths : Combining Semantic and Syntactic Dependencies for Relation Classification using Long Short-Term Memory Networks

Many approaches to solving tasks in the field of Natural Language Processing (NLP) use syntactic dependency trees (SDTs) as a feature to represent the latent nonlinear structure within sentences. Recently, work in parsing sentences to graph-based structures which encode semantic relationships between words—called semantic dependency graphs (SDGs)—has gained interest. This thesis seeks to explore the use of SDGs in place of and alongside SDTs within a relation classification system based on long short-term memory (LSTM) neural networks. Two methods for handling the information in these graphs are presented and compared between two SDG formalisms. Three new relation extraction system architectures have been created based on these methods and are compared to a recent state-of-the-art LSTM-based system, showing comparable results when semantic dependencies are used to enhance syntactic dependencies, but with significantly fewer training parameters.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-153877
Date January 2018
CreatorsCapshaw, Riley
PublisherLinköpings universitet, Interaktiva och kognitiva system
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0019 seconds