Return to search

Schrödinger equations with an external magnetic field: Spectral problems and semiclassical states

In this thesis, we study Schrödinger equations with an external magnetic field. In the first part, we are interested in an eigenvalue problem. We work in an open, bounded and simply connected domain in dimension two. We consider a magnetic potential singular at one point in the domain, and related to the magnetic field being a multiple of a Dirac delta. Those two objects are related to the Bohm-Aharonov effect, in which a charged particle is influenced by the presence of the magnetic potential although it remains in a region where the magnetic field is zero. We consider the Schrödinger magnetic operator appearing in the Schrödinger equation in presence of an external magnetic field. We want to study the spectrum of this operator, and more particularly how it varies when the singular point moves in the domain. We prove some results of continuity and differentiability of the eigenvalues when the singular point moves in the domain or approaches its boundary. Finally, in case of half-integer circulation of the magnetic potential, we study some asymptotic behaviour of the eigenvalues close to their critical points. In the second part, we study nonlinear Schrödinger equations in a cylindrically setting. We are interested in the semiclassical limit of the equation. We prove the existence of a semiclassical solution concentrating on a circle. Moreover, the radius of that circle is determined by the electric potential, but also by the magnetic potential. This result is totally new with respect to the ones before, in which the concentration is driven only by the electric potential. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Identiferoai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/216641
Date11 September 2015
CreatorsNys, Manon
ContributorsBonheure, Denis, Terracini, Susanna, Gloria, Antoine, Felli, Veronica, Loss, Michael, Pratelli, Aldo
PublisherUniversite Libre de Bruxelles, Università degli Studi di Milano-Bicocca, Facoltà di Scienze Matematiche, Fisiche e Naturali - Dottorato di Ricerca in Matematica Pura e Applicata, Université libre de Bruxelles, Faculté des Sciences – Mathématiques, Bruxelles
Source SetsUniversité libre de Bruxelles
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation
FormatNo full-text files

Page generated in 0.0028 seconds