• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Excitations in superfluids of atoms and polaritons

Pinsker, Florian January 2014 (has links)
This thesis is devoted to the study of excitations in atomic and polariton Bose-Einstein condensates (BEC). These two specimens are prime examples for equilibrium and non equilibrium BEC. The corresponding condensate wave function of each system satisfies a particular partial differential equation (PDE). These PDEs are discussed in the beginning of this thesis and justified in the context of the quantum many-body problem. For high occupation numbers and when neglecting quantum fluctuations the quantum field operator simplifies to a semiclassical wave. It turns out that the interparticle interactions can be simplified to a single parameter, the scattering length, which gives rise to an effective potential and introduces a nonlinearity to the PDE. In both cases, i.e. equilibrium and non equilibrium, the main model corresponding to the semiclassical wave is the Gross-Pitaevskii equation (GPE), which includes certain mathematical adaptions depending on the physical context of the consideration and the nature of particles/quasiparticles, such as additional complex pumping and growth terms or terms due to motion. In the course of this work I apply a variety of state-of-the-art analytical and numerical tools to gain information about these semiclassical waves. The analytical tools allow e.g. to determine the position of the maximum density of the condensate wave function or to find the critical velocities at which excitations are expected to be generated within the condensate. In addition to analytical considerations I approximate the GPE numerically. This allows to gain the condensate wave function explicitly and is often a convenient tool to study the emergence of excitations in BEC. It is in particular shown that the form of the possible excitations significantly depends on the dimensionality of the considered system. The generated excitations within the BEC include quantum vortices, quantum vortex rings or solitons. In addition multicomponent systems are considered, which enable more complex dynamical scenarios. Under certain conditions imposed on the condensate one obtains dark-bright soliton trains within the condensate wave function. This is shown numerically and analytical expressions are found as well. In the end of this thesis I present results as part of an collaborative effort with a group of experimenters. Here it is shown that the wave function due to a complex GPE fits well with experiments made on polariton condensates, statically and dynamically.
2

On the Eigenvalues of the Manakov System

Keister, Adrian Clark 13 July 2007 (has links)
We clear up two issues regarding the eigenvalue problem for the Manakov system; these problems relate directly to the existence of the soliton [sic] effect in fiber optic cables. The first issue is a bound on the eigenvalues of the Manakov system: if the parameter ξ is an eigenvalue, then it must lie in a certain region in the complex plane. The second issue has to do with a chirped Manakov system. We show that if a system is chirped too much, the soliton effect disappears. While this has been known for some time experimentally, there has not yet been a theoretical result along these lines for the Manakov system. / Ph. D.
3

Resultados de multiplicidade para equações de Schrödinger com campo magnético via teoria de Morse e topologia do domínio / Multiplicity results for nonlinear Schrödinger equations with magnetic field via Morse theory and domain topology

Nemer, Rodrigo Cohen Mota 02 December 2013 (has links)
Neste trabalho, estudamos a existência de soluções não triviais para uma classe de equações de Schrödinger não lineares envolvendo um campo magnético com condição de Dirichlet ou condição de fronteira mista Dirichlet-Neumann. Nos dois primeiros capítulos, damos uma estimativa para o número de soluções não triviais para o problema de Dirichlet em termos da topologia do domínio. Nos dois capítulos restantes, consideramos o problema de fronteira mista e estimamos o número de soluções não triviais em termos da topologia da porção da fronteira onde é prescrita a condição de Neumann. Em ambos os casos, usamos a teoria de categoria de Ljusternik-Schnirelmann e a teoria de Morse / We study the existence of nontrivial solutions for a class of nonlinear Schrödinger equations involving a magnetic field with Dirichlet or mixed DirichletNeumann boundary condition. In the first two chapters we give an estimate for the number of nontrivial solutions for the Dirichlet boundary value problem in terms of topology of the domain. In the last two chapters we consider mixed DirichletNeumann boundary value problems and the estimation of the number of nontrivial solutions is given in terms of the topology of the part of the boundary where the Neumann condition is prescribed. In both cases, we use Lyusternik- Shnirelman category and the Morse theory
4

Resultados de multiplicidade para equações de Schrödinger com campo magnético via teoria de Morse e topologia do domínio / Multiplicity results for nonlinear Schrödinger equations with magnetic field via Morse theory and domain topology

Rodrigo Cohen Mota Nemer 02 December 2013 (has links)
Neste trabalho, estudamos a existência de soluções não triviais para uma classe de equações de Schrödinger não lineares envolvendo um campo magnético com condição de Dirichlet ou condição de fronteira mista Dirichlet-Neumann. Nos dois primeiros capítulos, damos uma estimativa para o número de soluções não triviais para o problema de Dirichlet em termos da topologia do domínio. Nos dois capítulos restantes, consideramos o problema de fronteira mista e estimamos o número de soluções não triviais em termos da topologia da porção da fronteira onde é prescrita a condição de Neumann. Em ambos os casos, usamos a teoria de categoria de Ljusternik-Schnirelmann e a teoria de Morse / We study the existence of nontrivial solutions for a class of nonlinear Schrödinger equations involving a magnetic field with Dirichlet or mixed DirichletNeumann boundary condition. In the first two chapters we give an estimate for the number of nontrivial solutions for the Dirichlet boundary value problem in terms of topology of the domain. In the last two chapters we consider mixed DirichletNeumann boundary value problems and the estimation of the number of nontrivial solutions is given in terms of the topology of the part of the boundary where the Neumann condition is prescribed. In both cases, we use Lyusternik- Shnirelman category and the Morse theory
5

Schrödinger equations with an external magnetic field: Spectral problems and semiclassical states

Nys, Manon 11 September 2015 (has links)
In this thesis, we study Schrödinger equations with an external magnetic field. In the first part, we are interested in an eigenvalue problem. We work in an open, bounded and simply connected domain in dimension two. We consider a magnetic potential singular at one point in the domain, and related to the magnetic field being a multiple of a Dirac delta. Those two objects are related to the Bohm-Aharonov effect, in which a charged particle is influenced by the presence of the magnetic potential although it remains in a region where the magnetic field is zero. We consider the Schrödinger magnetic operator appearing in the Schrödinger equation in presence of an external magnetic field. We want to study the spectrum of this operator, and more particularly how it varies when the singular point moves in the domain. We prove some results of continuity and differentiability of the eigenvalues when the singular point moves in the domain or approaches its boundary. Finally, in case of half-integer circulation of the magnetic potential, we study some asymptotic behaviour of the eigenvalues close to their critical points. In the second part, we study nonlinear Schrödinger equations in a cylindrically setting. We are interested in the semiclassical limit of the equation. We prove the existence of a semiclassical solution concentrating on a circle. Moreover, the radius of that circle is determined by the electric potential, but also by the magnetic potential. This result is totally new with respect to the ones before, in which the concentration is driven only by the electric potential. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
6

Sur l'équation de Gross-Pitaevskii uni-dimensionnelle et quelques généralisations du flot par courbure binormale / On the one-dimensional Gross-Pitaevskii equation and some generalisations of the binormal curvature flow

Mohamad, Haidar 23 June 2014 (has links)
Ce travail est une contribution à l'étude des équations de Schrödinger non-linéaires (NLS) en dimension un d'espace. De telles équations interviennent notamment comme modèles dans plusieurs domaines de la physique mathématique, tels l'optique non-linéaire, la superfluidité, la supraconductivité et la condensation de Bose-Einstein.Cette thèse contient trois thèmes connexes inclus dans les chapitres 2, 3 et 4. Dans la première partie (chapitre 2), on s'intéresse à la construction des solutions en multi-solitons de l'équation de Gross-Pitaevskii (NLS défocalisante avec non-linéarité cubique), comme une superposition approximative des ondes progressives (solitons). Cette partie contient également une description détaillée des interactions entre les solitons. Ces résultats sont obtenus en exploitant l'intégrabilité de l'équation de Gross-Pitaevskii et son système de Marchenko associé.La deuxième partie (chapitre 4) clarifie les relations entre la formulation classique et la formulation dite hydrodynamique de l'équation de Gross-Pitaevskii. Cette dernière a un sens lorsque la solution ne s'annule jamais dans le domaine spatial. La dernière partie (chapitre 3) est consacrée à l'étude du problème de Cauchy d'une famille d'équations aux dérivées partielles quasi-linéaires qui généralise l'équation du flot par courbure binormal d'une courbe dans l'espace euclidien de dimension trois. Cette dernière est liée formellement à NLS par la transformation de Hasimoto. Dans notre généralisation, la vitesse d'un point de la courbe est toujours dirigée dans la direction du vecteur binormal, mais son amplitude peut dépendre de l'abscisse curviligne ainsi de la position dans l'espace. Notre approche pour prouver l'existence est le suivant: schéma semi-discret (discret en espace et continu en temps), obtention de bornes sur les problèmes discrets et argument par compacité. Un théorème de comparaison entraîne l'unicité. / This work is a contribution to the study of nonlinear Schrödinger equations (NLS) in the one-dimensional space. Such equations arise in many physical fields, including nonlinear optics and Bose-Einstein condensation. The thesis contains three connected themes included in chapters 2, 3 and 4. The first part (chapter 2) constructs multi-soliton solutions of the Gross-Pitaevskii (or defocussing NLS) equation, as an approximate superposition of traveling waves (solitons). This part contains also a detailed description of the interactions between solitons. These results are obtained by exploiting the integrability of the the Gross-Pitaevskii equation and its associated Marchenko system. The second part (chapter 4) clarifies the relations between the classical formulation and the so-called hydrodynamical formulation that only has a meaning when the solution does not vanish anywhere in the spatial domain The last part (chapter 3) of this thesis concerns existence and uniqueness results for a family of quasi-linear partial differential equations that generalize the equation of the binormal curvature flow for a curve in the three-dimensional space. The latter equation is in connection to the focussing cubic NLS by Hasimoto transformation. In our generalization, the velocity of a point on the curve is still directed along the binormal vector (so that in particular the length of the curve is preserved) but the magnitude of the speed is allowed to depend both on the curvilinear parameter and on the position in space. Existence is proven using spatial discretization together with some a priori bounds on the approximate solutions. Uniqueness follows from a comparison theorem.
7

Existence and orbital stability of normalized solutions for nonlinear Schrödinger equations / Solutions normalisées pour équations de Schrödinger

Gou, Tianxiang 29 September 2017 (has links)
Dans cette thèse nous étudions l’existence et la stabilité orbitale de solutions ayant une norme prescrite pour deux types d’équations Schrödinger non linéaires dans , à savoir, une classe de systèmes non linéaires couplés de Schrödinger dans et une classe d’équations non linéaires de Schrödinger du quatrième ordre dans . Ces deux types d’équations non linéaires de Schrödinger surviennent dans de nombreuses applications en mathématiques et physique, et sont devenus une grande attention dans les années récentes. D’un point de vue physique, de telles solutions sont souvent référées comme des solutions normalisées, qui sont obtenues comme points critiques d’énergie fonctionnelle associée sous contrainte avec une norme. Les éléments clés de nos preuves sont les méthodes variationnelles. / In this thesis, we are concerned with the existence and orbital stability of solutions having prescribed -norm for two types of nonlinear Schrödinger equations in , namely a class of coupled nonlinear Schrödinger systems in and a class of fourth-order nonlinear Schrödinger equations in . These two types of nonlinear Schrödinger equations arise in a variety of mathematical and physical models, and have drawn wide attention to research in recent years. From a physical point of view, such solutions are often referred as normalized solutions, which correspond to critical points of the underlying energy functional restricted to -norm constraint. The main ingredients of our proofs are variational methods.

Page generated in 0.1445 seconds