• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comportement en temps long de quelques EDPs dispersives / Long time behaviour of some dispersive partial differential equations (PDEs)

Kabakouala, André Bernard 12 March 2018 (has links)
Dans cette thèse on étudie la stabilité orbitale des ondes solitaires de deux types d’équations d’évolution non linéaires: l’équation de Degasperis-Procesi (DP), qui est une équation du type Camassa-Holm, et l’équation de Kawahara généralisée (gKW), qui correspond à une équation de Korteweg-de Vries généralisée (gKdV) supplémentée d’un terme d’ordre 5. Sur le modèle DP on apporte une amélioration significative de la preuve de la stabilité d’un peakon donnée par Lin et Liu. Puis, en utilisant la méthode de Martel-Merle-Tsai adaptée par El Dika-Molinet dans le cas de l’équation de Camassa-Holm, on montre que la somme de N peakons, de vitesses croissantes et suffisamment distants les uns des autres à l’instant initial, est orbitalement stable. Sur le modèle de Kawahara généralisé, on prouve l’existence de deux branches d’ondes solitaires : l’une construite en appliquant le théorème des fonctions implicites au voisinage d’une onde solitaire explicite de gKW découverte par Dey. al., l’autre construite en résolvant un problème de minimisation sur R, avec une contrainte qui force la famille à converger vers le soliton explicite de l’équation de Korteweg-de Vries généralisée (gKdV) lorsque le coefficient devant l’opérateur d’ordre 5 tend vers 0. Par remise à l’échelle, on obtient ainsi une branche constituée d’ondes solitaires voyageant à faibles vitesses. On prouve ensuite que les ondes solitaires constituant ces deux branches sont orbitalement stables en appliquant la méthode spectrale introduite par Benjamin et des arguments de continuité. / No summary available
2

Modèles mathématiques de type "Hamiltonian Mean-Field" ˸ stabilité et méthodes numériques autour d’états stationnaires / "Hamiltonian Mean-Field" mathematical models ˸ stability and numerical methods regarding steady states

Fontaine, Marine 08 June 2018 (has links)
Dans cette thèse, on étudie la stabilité orbitale d’états stationnaires de modèles mathématiques de type "Hamiltonian mean-field", dits modèles HMF. Cette étude est d’abord menée d’un point de vue théorique en utilisant des méthodes variationnelles. Puis, elle est menée d’un point de vue numérique en commençant par l’élaboration de schémas conservant exactement des états stationnaires. Le Chapitre 2 présente une étude théorique de la stabilité orbitale des états stationnaires du modèle HMF Poisson. Plus précisément, on prouve la stabilité orbitale d’une grande classe d’états stationnaires solutions du système HMF avec potentiel de Poisson. Ces états stationnaires sont des minimiseurs d’un problème à une, deux ou une infinité de contraintes d’une certaine fonctionnelle. La preuve s’appuie sur une approche variationnelle. Cependant le caractère borné du domaine empêche l’utilisation des techniques usuelles basées sur des invariances d’échelles. On introduit alors de nouvelles méthodes, spécifiques à ce problème, mais demeurant dans l’esprit des outils de réarrangements introduits pour le système de Vlasov-Poisson. En particulier, ces méthodes permettent de considérer un nombre arbitraire de contraintes et aboutissent à un résultat de stabilité pour une grande classe d’états stationnaires. Dans le Chapitre 3, on construit des schémas numériques conservant exactement des états stationnaires donnés. Ces schémas modélisent mieux la propriété de stabilité orbitale que les schémas classiques. Puis, on propose un schéma plus général en construisant un schéma qui conserve tous les états stationnaires des modèles HMF. Pour finir, à l’aide de ces schémas, est menée une étude numérique de la stabilité des états stationnaires du système de HMF Poisson qui vient compléter l’étude théorique du Chapitre 2. / In this thesis, we study the nonlinear orbital stability of steady states of "Hamiltonian mean-field" models, called HMF models. First, this study is being done theoretically by using variational methods. It is then carried out numerically by building numerical schemes wich exactly preserve steady states. Chapter 2 presents a theoretical study of the orbital stability of steady states which are solutions to the HMF Poisson system. More specifically, the orbital stability of a large class of steady states which are solutions to the HMF system with Poisson potential is proved. These steady states are obtained as minimizers of an energy functional under one, two or infinitely many constraints. The proof relies on a variational approach. However the boundedness of the space domain prevents us from using usal technics based on scale invariance. Therefore, we introduce new methods which, although specific to our context, remain somehow in the same spirit of rearrangements tools introduced for the Vlasov-Poisson system. In particular, these methods allow for the incorporation of an arbitrary number of constraints, and yield a stability result for a large class of steady states. In Chapter 3, numerical schemes exactly preserving given steady states are built. These schemes model the orbital stability property better than the classic ones. Then, a more general scheme is introduced by building a scheme wich preserves all steady states of HMF models. Lastly, by means of these schemes, we conduct a numerical study of stability of steady states solutions to HMF Poisson system. This completes the theoretical study in Chapter 2.
3

Existence, stabilité et instabilité d'ondes stationnaires pour quelques équations de Klein-Gordon et Schrödinger non linéaires

Le Coz, Stefan 28 November 2007 (has links) (PDF)
Cette thèse porte sur l'étude des ondes stationnaires d'équations dispersives non linéaires, en particulier l'équation de Schrödinger, mais aussi celle de Klein-Gordon. Les travaux présentés s'articulent autour de deux questions principales : l'existence et la stabilité orbitale de ces ondes stationnaires. <br /><br />L'existence est étudiée par des méthodes essentiellement variationnelles. En plus de la simple existence, on met en évidence différentes caractérisations variationnelles des ondes stationnaires, par exemple en tant que points critiques d'une certaine fonctionnelle au niveau du col ou au niveau de moindre énergie, ou encore en tant que minimiseurs d'une fonctionnelle sur différentes contraintes.<br /><br />Selon la puissance de la non-linéarité et la forme de la dépendance en espace, on démontre que les ondes stationnaires sont stables ou instables. Lorsqu'elles sont instables, on met en évidence que dans certaines situations l'instabilité se manifeste par explosion, tandis que dans d'autres les solutions sont globalement bien posées. En plus des différentes caractérisations variationnelles des <br />ondes stationnaires, les preuves des résultats de stabilité et d'instabilité nécessitent de dériver des informations de nature spectrale. En particulier, dans la première partie de cette thèse, on prouve un résultat de non-dégénérescence du linéarisé pour un problème limite. Dans la deuxième partie, on localise la deuxième valeur propre du linéarisé par la combinaison d'une méthode perturbative et d'arguments de continuation.
4

Étude de la stabilité des petites solutions<br />stationnaires pour une classe d'équations de Dirac non linéaires

Boussaid, Nabile 06 July 2006 (has links) (PDF)
Cette thèse est consacrée à l'étude de la<br />stabilité de petits états stationnaires d'une équation d'évolution<br />non linéaire issue de la mécanique quantique relativiste :<br />l'équation de Dirac non linéaire.<br /><br />Tout le long de notre étude, les équations non linéaires sont vues<br />comme des petites perturbations non linéaires de systèmes linéaires.<br />Une partie de cette thèse est donc consacrée à l'étude de problèmes<br />linéaires. Nous montrons que, pour un opérateur de Dirac n'ayant pas<br />de résonance aux seuils ni de valeur propre aux seuils, le<br />propagateur vérifie des estimations de propagation et de dispersion.<br />Nous en déduisons également des estimations de régularité au sens de<br />Kato et des estimations de Strichartz.<br /><br />En faisant des hypothèses ad hoc sur le spectre discret d'un<br />opérateur de Dirac, nous construisons des petites variétés formées<br />d'états stationnaires. Puis en faisant varier ces hypothèses, nous<br />faisons apparaître des phénomènes de stabilisation et d'instabilité<br />orbitale pour certains de ces états.
5

Existence and orbital stability of normalized solutions for nonlinear Schrödinger equations / Solutions normalisées pour équations de Schrödinger

Gou, Tianxiang 29 September 2017 (has links)
Dans cette thèse nous étudions l’existence et la stabilité orbitale de solutions ayant une norme prescrite pour deux types d’équations Schrödinger non linéaires dans , à savoir, une classe de systèmes non linéaires couplés de Schrödinger dans et une classe d’équations non linéaires de Schrödinger du quatrième ordre dans . Ces deux types d’équations non linéaires de Schrödinger surviennent dans de nombreuses applications en mathématiques et physique, et sont devenus une grande attention dans les années récentes. D’un point de vue physique, de telles solutions sont souvent référées comme des solutions normalisées, qui sont obtenues comme points critiques d’énergie fonctionnelle associée sous contrainte avec une norme. Les éléments clés de nos preuves sont les méthodes variationnelles. / In this thesis, we are concerned with the existence and orbital stability of solutions having prescribed -norm for two types of nonlinear Schrödinger equations in , namely a class of coupled nonlinear Schrödinger systems in and a class of fourth-order nonlinear Schrödinger equations in . These two types of nonlinear Schrödinger equations arise in a variety of mathematical and physical models, and have drawn wide attention to research in recent years. From a physical point of view, such solutions are often referred as normalized solutions, which correspond to critical points of the underlying energy functional restricted to -norm constraint. The main ingredients of our proofs are variational methods.

Page generated in 0.0427 seconds