Les protéines existent sous différents états fonctionnels régulés de façon précise par leur environnement afin de maintenir l‘homéostasie de la cellule et de l‘organisme vivant. La prévalence de ces états protéiques est dictée par leur énergie libre de Gibbs alors que la vitesse de transition entre ces états biologiquement pertinents est déterminée par le paysage d‘énergie libre. Ces paramètres sont particulièrement intéressants dans un contexte thérapeutique et biotechnologique, où leur perturbation par la modulation de la séquence protéique par des mutations affecte leur fonction. Bien que des nouvelles approches expérimentales permettent d‘étudier l‘effet de mutations en haut débit pour une protéine, ces méthodes sont laborieuses et ne couvrent qu‘une fraction de l‘ensemble des structures primaires d‘intérêt. L‘utilisation de modèles bio-informatiques permet de tester et générer in silico différentes hypothèses afin d‘orienter les approches expérimentales. Cependant, ces méthodes basées sur la structure se concentrent principalement sur la prédiction de l‘enthalpie d‘un état, alors que plusieurs évidences expérimentales ont démontré l‘importance de la contribution de l‘entropie. De plus, ces approches ignorent l‘importance de l‘espace conformationnel protéique dicté par le paysage énergétique cruciale à son fonctionnement. Une analyse des modes normaux peut être effectuée afin d‘explorer cet espace par l‘approximation que la protéine est dans une conformation d‘équilibre où chaque acide aminé est représenté par une masse régie par un potentiel harmonique. Les approches actuelles ignorent l‘identité des résidus et ne peuvent prédire l‘effet de mutations sur les propriétés dynamiques. Nous avons développé un nouveau modèle appelé ENCoM qui pallie à cette lacune en intégrant de l‘information physique et spécifique sur les contacts entre les atomes des chaînes latérales. Cet ajout permet une meilleure description de changements conformationnels d‘enzymes, la prédiction de l‘effet d‘une mutation allostérique dans la protéine DHFR et également la prédiction de l‘effet de mutations sur la stabilité protéique par une valeur entropique. Comparativement à des approches spécifiquement développées pour cette application, ENCoM est plus constant et prédit mieux l‘effet de mutations stabilisantes. Notre approche a également été en mesure de capturer la pression évolutive qui confère aux protéines d‘organismes thermophiles une thermorésistance accrue.
Identifer | oai:union.ndltd.org:usherbrooke.ca/oai:savoirs.usherbrooke.ca:11143/9468 |
Date | January 2016 |
Creators | Frappier, Vincent |
Contributors | Najmanovich, Rafaël, Lavigne, Pierre, Lehoux, Jean-Guy |
Publisher | Université de Sherbrooke |
Source Sets | Université de Sherbrooke |
Language | French, English |
Detected Language | French |
Type | Thèse |
Rights | © Vincent Frappier, Attribution - Pas d’Utilisation Commerciale - Partage dans les Mêmes Conditions 2.5 Canada, http://creativecommons.org/licenses/by-nc-sa/2.5/ca/ |
Page generated in 0.002 seconds