Inom linja ̈r algebra har varje vektorrum ett s ̊a kallat dualrum, vilket är ett vektorrum bestående av alla linjära funktioner från det ursprungliga rummet till sin kropp. Att beräkna dimensionen av ett dualrum tillhörande ett ändlig-dimensionellt vektorrum är relativt enkelt, för oändlig-dimensionella vektorrum är det mer komplicerat. Den sats vi ska diskutera, Erdős–Kaplansky Satsen, ämnar lösa den frågan med påståendet att ett dualrum tillhörande ett oändlig-dimensionellt vektorrum har dimension lika med sin kardinalitet.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-515423 |
Date | January 2023 |
Creators | Lundin, Edvin |
Publisher | Uppsala universitet, Algebra, logik och representationsteori |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | U.U.D.M. project report ; 2023:45 |
Page generated in 0.0017 seconds