In this thesis we propose a novel approach for tracking multiple objects using structural information. The objects are tracked by combining particle filter and frame description with Attributed Relational Graphs (ARGs). We start by learning a structural probabilistic model graph from annotated images. The graphs are then used to evaluate the current tracking state and to correct it, if necessary. By doing so, the proposed method is able to deal with challenging situations such as abrupt motion and tracking loss due to occlusion. The main contribution of this thesis is the exploration of the learned probabilistic structural model. By using it, the structural information of the scene itself is used to guide the object detection process in case of tracking loss. This approach differs from previous works, that use structural information only to evaluate the scene, but do not consider it to generate new tracking hypotheses. The proposed approach is very flexible and it can be applied to any situation in which it is possible to find structural relation patterns between the objects. Object tracking may be used in many practical applications, such as surveillance, activity analysis or autonomous navigation. In this thesis, we explore it to track multiple objects in sports videos, where the rules of the game create some structural patterns between the objects. Besides detecting the objects, the tracking results are also used as an input for recognizing the action each player is performing. This step is performed by classifying a segment of the tracking sequence using Hidden Markov Models (HMMs). The proposed tracking method is tested on several videos of table tennis matches and on the ACASVA dataset, showing that the method is able to continue tracking the objects even after occlusion or when there is a camera cut. / Nesta tese, uma nova abordagem para o rastreamento de múltiplos objetos com o uso de informação estrutural é proposta. Os objetos são rastreados usando uma combinação de filtro de partículas com descrição das imagens por meio de Grafos Relacionais com Atributos (ARGs). O processo é iniciado a partir do aprendizado de um modelo de grafo estrutural probabilístico utilizando imagens anotadas. Os grafos são usados para avaliar o estado atual do rastreamento e corrigi-lo, se necessário. Desta forma, o método proposto é capaz de lidar com situações desafiadoras como movimento abrupto e perda de rastreamento devido à oclusão. A principal contribuição desta tese é a exploração do modelo estrutural aprendido. Por meio dele, a própria informação estrutural da cena é usada para guiar o processo de detecção em caso de perda do objeto. Tal abordagem difere de trabalhos anteriores, que utilizam informação estrutural apenas para avaliar o estado da cena, mas não a consideram para gerar novas hipóteses de rastreamento. A abordagem proposta é bastante flexível e pode ser aplicada em qualquer situação em que seja possível encontrar padrões de relações estruturais entre os objetos. O rastreamento de objetos pode ser utilizado para diversas aplicações práticas, tais como vigilância, análise de atividades ou navegação autônoma. Nesta tese, ele é explorado para rastrear diversos objetos em vídeos de esporte, na qual as regras do jogo criam alguns padrões estruturais entre os objetos. Além de detectar os objetos, os resultados de rastreamento também são usados como entrada para reconhecer a ação que cada jogador está realizando. Esta etapa é executada classificando um segmento da sequência de rastreamento por meio de Modelos Ocultos de Markov (HMMs). A abordagem de rastreamento proposta é testada em diversos vídeos de jogos de tênis de mesa e na base de dados ACASVA, demonstrando a capacidade do método de lidar com situações de oclusão ou cortes de câmera.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-13012016-101607 |
Date | 20 October 2015 |
Creators | Henrique Morimitsu |
Contributors | Roberto Marcondes Cesar Junior, Junior Barrera, Isabelle Bloch, Anderson de Rezende Rocha, William Robson Schwartz |
Publisher | Universidade de São Paulo, Ciência da Computação, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | English |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds