Neste trabalho obtemos taxas de decaimento para autovalores e valores singulares de operadores integrais gerados por núcleos de quadrado integrável sobre a esfera unitária em \'R POT. m+1\', m 2, sob hipóteses sobre ambos, certas derivadas do núcleo e o operador integral gerado por tais derivadas. Este tipo de problema é comum na literatura, mas as hipóteses geralmente são definidas via diferenciação usual em \'R POT m+1\'. Aqui, as hipóteses são todas definidas via derivada de Laplace-Beltrami, um conceito genuinamente esférico investigado primeiramente por W. Rudin no começo dos anos 50. As taxas de decaimento apresentadas são ótimas e dependem da dimensão m e da ordem de diferenciabilidade usada para definir as condições de suavidade / In this work we obtain decay rates for singular values and eigenvalues of integral operators generated by square integrable kernels on the unit sphere in \'R m+1\', m 2, under assumptions on both, certain derivatives of the kernel and the integral operators generated by such derivatives. This type of problem is common in the literature but the assumptions are usually defined via standard differentiation in \'R POT. m+1\'. Here, the assumptions are all defined via the Laplace-Beltrami derivative, a concept first investigated by W. Rudin in the early fifties and genuinely spherical in nature. The rates we present are optimal and depend on both, the differentiability order used to define the smoothness conditions and the dimension m
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-14092011-094712 |
Date | 08 August 2011 |
Creators | Mario Henrique de Castro |
Contributors | Valdir Antonio Menegatto, Ana Paula Peron, Vinícius Vieira Fávaro, Ma To Fu, Daniel Marinho Pellegrino, Sergio Antonio Tozoni |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds