Return to search

Simultaneous Detection and Validation of Multiple Ingredients on Product Packages: An Automated Approach : Using CNN and OCR Techniques / Simultant detektering och validering av flertal ingredienser på produktförpackningar: Ett automatiserat tillvägagångssätt : Genom användning av CNN och OCR tekniker

Manual proofreading of product packaging is a time-consuming and uncertain process that can pose significant challenges for companies, such as scalability issues, compliance risks and high costs. This thesis work introduces a novel solution by employing advanced computer vision and machine learning methods to automate the proofreading of multiple ingredients’ lists corresponding to multiple products simultaneously within a product package. By integrating Convolutional Neural Network (CNN) and Optical Character Recognition (OCR) techniques, this study examines the efficacy of automated proofreading in comparison to manual methods. The thesis involves analyzing product package artwork to identify ingredient lists utilizing the YOLOv5 object detection algorithm and the optical character recognition tool EasyOCR for ingredient extraction. Additionally, Python scripts are employed to extract ingredients from corresponding INCI PDF files (document that lists the standardized names of ingredients used in cosmetic products). A comprehensive comparison is then conducted to evaluate the accuracy and efficiency of automated proofreading. The comparison of the extracted ingredients from the product packages and their corresponding INCI PDF files yielded a match of 12.7%. Despite the suboptimal result, insights from the study highlights the limitations of current detection and recognition algorithms when applied to complex artwork. A few examples of the insights have been that the trained YOLOv5 model cuts through sentences in the ingredient list or that EasyOCR cannot extract ingredients from vertically aligned product package images. The findings underscore the need for advancements in detection algorithms and OCR tools to effectively handle objects like product packaging designs. The study also suggests that companies, such as H&M, consider updating their artwork and INCI PDF files to align with the capabilities of current AI-driven tools. By doing so, they can enhance the efficiency and overall effectiveness of automated proofreading processes, thereby reducing errors and improving accuracy. / Manuell korrekturläsning av produktförpackningar är en tidskrävande och osäker process som kan skapa betydande utmaningar för företag, såsom skalbarhetsproblem, efterlevnadsrisker och höga kostnader. Detta examensarbete presenterar en ny lösning genom att använda avancerade metoder inom datorseende och maskininlärning för att automatisera korrekturläsningen av flera ingredienslistor som motsvarar flera produkter samtidigt inom en produktförpackning. Genom att integrera Convolutional Neural Network (CNN) och Optical Character Recognition (OCR) utreder denna studie effektiviteten av automatiserad korrekturläsning i jämförelse med manuella metoder. Avhandlingen analyserar designen av produktförpackningar för att identifiera ingredienslistor med hjälp av objektdetekteringsalgoritmen YOLOv5 och det optiska teckenigenkänningsverktyget EasyOCR för extrahera enskilda ingredienser från listorna. Utöver detta används Python-skript för att extrahera ingredienser från motsvarande INCI-PDF filer (dokument med standardiserade namn på ingredienser som används i kosmetika produkter). En omfattande jämförelse genomförs sedan för att utvärdera noggrannheten och effektiviteten hos automatiserad korrekturläsning. Jämförelsen av de extraherade ingredienserna från produktförpackningarna och deras korresponderande INCI-PDF filer gav ett matchnings resultat på 12.7%. Trots de mindre optimala resultaten belyser studien de begränsningar som finns hos de nuvarande detekterings- och teckenigenkänningsalgoritmerna när de appliceras på komplexa verk av produktförpackningar. Ett fåtal exempel på insikterna är bland annat att den tränade YOLOv5 modellen skär igenom meningar i ingredienslistan eller att EasyOCR inte kan extrahera ingredienser från stående ingredienslistor på produktförpackningsbilder. Resultaten understryker behovet av framsteg inom detekteringsalgoritmer och OCR-verktyg för att effektivt kunna hantera komplexa objekt som produktförpackningar. Studien föreslår även att företag, såsom H&M, överväger att uppdatera sina design av produktförpackningar och INCI-PDF filer för att anpassa sig till kapaciteten hos aktuella AI-drivna verktyg. Genom att utföra detta kan de förbättra både effektiviteten och den övergripande kvaliteten hos de automatiserade korrekturläsningsprocesserna, vilket minskar fel och ökar noggrannheten.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-347223
Date January 2024
CreatorsFarokhynia, Rodbeh, Krikeb, Mokhtar
PublisherKTH, Hälsoinformatik och logistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-CBH-GRU ; 2024:077

Page generated in 0.0031 seconds