Almost all life forms on earth have adapted to the most impactful and most predictable recurring change in environmental condition, the cycle of day and night, caused by the axial rotation of the planet. As a result many animals have evolved intricate endogenous clocks, which adapt and synchronize the organisms’ physiology, metabolism and behaviour to the daily change in environmental conditions. The scientific field researching these endogenous clocks is called chronobiology and has steadily grown in size, scope and relevance since the works of the earliest pioneers in the 1960s.
The number one model organism for the research of circadian clocks is the fruit fly, Drosophila melanogaster, whose clock serves as the entry point to understanding the basic inner workings of such an intricately constructed endogenous timekeeping system. In this thesis it was attempted to combine the research on the circadian clock with the techniques of optogenetics, a fairly new scientific field, launched by the discovery of Channelrhodopsin 2 just over 15 years ago. Channelrhodopsin 2 is a light-gated ion channel found in the green alga Chlamydomonas reinhardtii. In optogenetics, researches use these light-gated ion channels like Channelrhodopsin 2 by heterologously expressing them in cells and tissues of other organisms, which can then be stimulated by the application of light. This is most useful when studying neurons, as these channels provide an almost non-invasive tool to depolarize the neuronal plasma membranes at will. The goal of this thesis was to develop an optogenetic tool, which would be able to influence and phase shift the circadian clock of Drosophila melanogaster upon illumination. A phase shift is the adaptive response of the circadian clock to an outside stimulus that signals a change in the environmental light cycle. An optogenetic tool, able to influence and phase shift the circadian clock predictably and reliably, would open up many new ways and methods of researching the neuronal network of the clock and which neurons communicate to what extent, ultimately synchronizing the network.
The first optogenetic tool to be tested in the circadian clock of Drosophila melanogaster was ChR2-XXL, a channelrhodopsin variant with dramatically increased expression levels and photocurrents combined with a prolonged open state. The specific expression of ChR2-XXL and of later constructs was facilitated by deploying the three different clock-specific GAL4-driver lines, clk856-gal4, pdf-gal4 and mai179-gal4. Although ChR2-XXL was shown to be highly effective at depolarizing neurons, these stimulations proved to be unable to significantly phase shift the circadian clock of Drosophila. The second series of experiments was conducted with the conceptually novel optogenetic tools Olf-bPAC and SthK-bPAC, which respectively combine a cyclic nucleotide-gated ion channel (Olf and SthK) with the light-activated adenylyl-cyclase bPAC. These tools proved to be quite useful when expressed in the motor neurons of instar-3 larvae of Drosophila, paralyzing the larvae upon illumination, as well as affecting body length. This way, these new tools could be precisely characterized, spawning a successfully published research paper, centered around their electrophysiological characterization and their applicability in model organisms like Drosophila. In the circadian clock however, these tools caused substantial damage, producing severe arrhythmicity and anomalies in neuronal development. Using a temperature-sensitive GAL80-line to delay the expression until after the flies had eclosed, yielded no positive results either. The last series of experiments saw the use of another new series of optogenetic tools, modelled after the Olf-bPAC, with bPAC swapped out for CyclOp, a membrane-bound guanylyl-cyclase, coupled with less potent versions of the Olf. This final attempt however also ended up being unsuccessful. While these tools could efficiently depolarize neuronal membranes upon illumination, they were ultimately unable to stimulate the circadian clock in way that would cause it to phase shift.
Taken together, these mostly negative results indicate that an optogenetic manipulation of the circadian clock of Drosophila melanogaster is an extremely challenging subject. As light already constitutes the most impactful environmental factor on the circadian clock, the combination of chronobiology with optogenetics demands the parameters of the conducted experiments to be tuned with an extremely high degree of precision, if one hopes to receive positive results from these types of experiments at all. / Nahezu alle Lebewesen der Erde haben sich an den Tag-Nacht-Zyklus angepasst, die einflussreichste und verlässlichste wiederkehrende Veränderung der Umwelt-bedingungen, verursacht durch die axiale Rotation des Planeten. Daraus resultierend haben viele Tiere komplizierte innere Uhren entwickelt, welche ihre Physiologie, ihren Stoffwechsel und ihr Verhalten an die tägliche Veränderung der natürlichen Bedingungen anpassen. Das Wissenschaftsfeld, das sich der Erforschung dieser inneren Uhren widmet, wird Chronobiologie genannt und hat seit der Arbeit der ersten Pioniere ab 1960 stetig an Größe und Relevanz gewonnen. Der prominenteste Modellorganismus für die Erforschung der circadianen Uhr ist Drosophila melanogaster, deren Uhr als Ansatzpunkt dient, die grundlegenden Vorgänge eines derart komplexen, endogenen Taktsystems zu verstehen.
In dieser Thesis wurde versucht die Forschung an der circadianen Uhr mit den Techniken der Optogenetik zu kombinieren, eines jungen Forschungsfeldes, welches durch die Entdeckung von Channelrhodpsin 2 vor über 15 Jahren eröffnet wurde. Channelrhodopsin 2 ist ein Licht-gesteuerter Ionenkanal, der in der Grünalge Chlamydomonas reinhardtii entdeckt wurde. In der Optogenetik nutzen Forscher diese Licht-gesteuerten Ionenkanäle, indem sie sie in den Zellen anderer Organismen exprimieren, welche dann durch Licht stimuliert werden können. Dies ist besonders nützlich bei der Untersuchung von Neuronen, da diese Kanäle ein nahezu nicht-invasives Werkzeug zur Depolarisation neuronaler Membranen bieten. Das Ziel dieser Thesis war es, ein optogenetisches Werkzeug zu entwickeln, welches die circadiane Uhr von Drosophila melanogaster durch Licht manipulieren und deren Phase verschieben kann. Eine Phasenverschiebung ist die adaptive Antwort der circadianen Uhr auf einen äußeren Reiz, welcher eine Veränderung des natürlichen Lichtzyklus signalisiert. Ein optogenetisches Werkzeug, das die Phase der inneren Uhr verlässlich verschieben kann, würde viele neue Möglichkeiten zur Erforschung des neuronalen Uhrnetzwerks eröffnen und wie die Neuronen miteinander kommunizieren um das Netzwerk zu synchronisieren.
Das erste optogenetische Werkzeug das in der circadianen Uhr von Drosophila melanogaster getestet wurde war „ChR2-XXL“, eine Channelrhodopsin-Variante mit erhöhter Expression und Photoströmen, gepaart mit einem verlängerten geöffneten Zustand. Die spezifische Expression von ChR2-XXL und auch die späterer Konstrukte wurde durch die Verwendung der drei Uhr-spezifischen GAL4-Treiberlinien clk856-gal4, pdf-gal4 und mai179-gal4 bewerkstelligt. Obwohl bereits gezeigt wurde, dass ChR2-XXL höchst effektiv die Depolarisierung von Neuronen bewirkt, waren diese Stimulationen jedoch nicht in der Lage die Phase der circadianen Uhr von Drosophila signifikant zu verschieben. Die zweite Serie an Versuchen wurde mit den konzeptionell neuartigen optogenetischen Werkzeugen Olf-bPAC und SthK-bPAC durchgeführt, welche jeweils einen durch zyklische Nukleotide gesteuerten Ionenkanal (Olf und SthK) mit der Licht-gesteuerten Adenylatcyclase bPAC kombinieren. Diese Werkzeuge erwiesen sich als äußert nützlich, solange sie in den Motoneuronen von Drosophila-Larven im dritten Larvenstadium exprimiert wurden, wo sie bei Beleuchtung die Larven sowohl paralysierten, als auch deren Körperlänge beeinflussten. Auf diese Weise konnten diese neuen Werkzeuge präzise charakterisiert werden, was in der erfolgreichen Veröffentlichung eines Forschungsartikels mündete, welcher hauptsächlich von der elektrophysiologischen Charakterisierung der Werkzeuge handelte und von deren Anwendungsmöglichkeiten in Modellorganismen wie Drosophila. In der circadianen Uhr verursachten diese Werkzeuge jedoch substantielle Schäden und produzierten schwere Arrhythmie und Anomalien in der neuronalen Entwicklung. Die Verwendung einer temperatur-sensitiven GAL80-Linie um die Expression zu verzögern, erzeugte ebenfalls keinerlei positive Ergebnisse. Für die letzte Serie an Experimenten wurde eine weitere Reihe neuer optogenetischer Werkzeuge verwendet, orientiert an Olf-bPAC und SthK-bPAC, wobei bPAC durch die membrangebundene Guanylatcyclase „CyclOp“ ausgetauscht wurde, welche wiederrum mit weniger wirkstarken Olf-Varianten kombiniert wurde. Dieser letzte Ansatz scheiterte jedoch ebenfalls. Obwohl diese neuen Werkzeuge in der Lage waren die Neuronenmembran bei Beleuchtung effektiv zu depolarisieren, vermochten sie es letztendlich nicht eine Phasenverschiebung zu bewirken.
Zusammengenommen zeigen diese überwiegend negativen Ergebnisse, dass die optogenetische Manipulation der circadianen Uhr von Drosophila melanogaster ein extrem anspruchsvolles Thema ist. Da Licht bereits ohnehin den einflussreichsten Umweltfaktor für die circadiane Uhr darstellt, verlangt die Kombination von Chronobiologie und Optogenetik eine extrem präzise Feinabstimmung der Versuchsparameter, um überhaupt darauf hoffen zu dürfen, positive Ergebnisse mit derlei Versuchen zu erzeugen.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:18495 |
Date | January 2019 |
Creators | Beck, Sebastian |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by-sa/4.0/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0026 seconds