Cette thèse est consacrée à l'étude des théories conformes des champs (CFTs) bidimensionelles et à leur interprétation géométrique, dans le cadre de la théorie bosonique des cordes. Après un premier chapitre introductif, nous construisons des théories conformes ayant pour espaces-cibles des quotients généraux de groupes compacts par des sous-groupes abéliens finis. Plusieurs choix de champs de fond antisymétriques sont possibles, correspondant du côté de la CFT à la torsion discrète. Dans le troisième chapitre, nous ajoutons des cordes ouvertes à ces constructions; nous étudions les états de bord, leur interprétation géométrique en termes de D-branes et montrons comment celles-ci sont stabilisées par le flux du champ de jauge. Le quatrième chapitre développe l'analyse de basse énergie, par le calcul à deux boucles de la fonction beta du champ de jauge, menant à des corrections à l'action de Born-Infeld. Il inclut aussi des resultats sur l'action de BI non-abélienne à cet ordre. Le dernier chapitre contient les conclusions et perspectives.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00008396 |
Date | 30 September 2004 |
Creators | Bordalo, Pedro |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds