Return to search

Relevance of HIV infection to osteoblast-T cell crosstalk

With the development of Highly Active Anti-Retroviral Therapy (HAART), Human Immunodeficiency Virus (HIV) infection has evolved from a fatal disease to a chronic condition with increased risk for non-infectious comorbidities, including reduced bone density. Bone density is maintained through the coupled activities of osteoblast matrix deposition and osteoclast resorption; while uncoupling this process can result in bone loss and increased fracture risk. CD4+ T cells are critical in regulating the activity of these cells. Relevant to this thesis, studies have shown that HAART treated patients experience higher levels of immune activation; possibly contributing to the observed bone loss. If osteoimmune dysregulation does occur, there is a need to develop therapeutics that target this process, especially in the context of HIV infection.
To evaluate osteoblast differentiation, we developed a high-throughput screening method to identify osteo-regulatory compounds. By screening over 5,000 compounds, we identified 18 that robustly induced osteoblast differentiation, using a mouse mesenchymal stem cell. We validated two of these compounds, rapamycin and FK-506, which are known immunosuppressants. Secondly, we addressed the role of activated CD4+T cells and HIV-infected T cells in osteogenesis. We found that supernatants from activated T cells potently inhibit osteoblast differentiation. However, when osteoblasts were co-cultured with HIV-infected T cells, differentiation was inhibited regardless of activation status, suggesting intrinsic differences between HIV infected and uninfected T cells. Finally, to prevent the inhibition of osteogenesis by activated T cells, we evaluated rapamycin, our pro-osteogenic and T cell activation antagonist, as well as the novel compound JQ1, an inflammatory inhibitor that targets bromodomain-containing proteins. Both rapamycin and JQ1 efficiently blocked the cytotoxic effects of supernatants from non-infected activated T cells on osteoblasts, whereas only rapamycin prevented inhibition in the co-culture model. In contrast, neither rapamycin nor JQ1 were able to prevent inhibition by HIV infected, activated T cells. This suggests that HIV exacerbates the negative effects of T cell activation on osteoblastogenesis. These data support a mechanism for HIV infection and T cell activation mediating bone loss.

Identiferoai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/15065
Date22 January 2016
CreatorsHarris, Ariana Darcy
Source SetsBoston University
Languageen_US
Detected LanguageEnglish
TypeThesis/Dissertation

Page generated in 0.0023 seconds