Return to search

Catalytic activity analysis of metallic nanoparticles by model reactions

In dieser Arbeit wurden zwei katalytische Modellreaktionen studiert. Zunächst die katalytische Reduktion von p-Nitrophenol (Nip) mit Natriumborhydrid (BH_4^-). Diese verläuft entlang der direkten Route: Dabei wird Nip über p-Hydroxylaminophenol (Hx) zum Produkt p-Aminophenol (Amp) reduziert. Ein kinetisches Modell wird vorgestellt, dass die Reaktion auf Basis des Langmuir-Hinshelwood (LH) Mechanismus beschreibt. Die Lösung der Gleichungen gibt die Nip Konzentration als Funktion der Zeit, welche direkt mit den experimentellen Daten verglichen werden kann. Werden als Katalysator auf sphärischen Polyeletrolytbürsten stabilisierte Gold Nanopartikel (SPB-Au) verwendet, zeigt sich eine gute Übereinstimmung und unterstreicht die Allgemeingültigkeit der direkten Route.
Der zweite Teil beschäftigt sich mit der katalytischen Oxidation von 3,3’,5,5’-Tetramethylbenzidin (TMB) durch Wasserstoffperoxid (H_2O_2) an SPB-Pt Nanopartikeln. Dabei wurden die Katalyse mithilfe zweier Modelle analysiert: Michaelis-Menten (MM) und Langmuir-Hinshelwood (LH). Im MM Modell wird die Oxidation von TMB durch die Nanopartikel mit der Peroxidase katalysierten TMB Oxidation unter Annahme des Ping-Pong Mechanismus verglichen. Es wurde gezeigt, dass die häufig verwendete Analyse der initialen Reaktionsraten große Fehler verursacht und zu inkonsistenten Ergebnissen führt. Dies zeigt dass dieses Vorgehen zu Analyse der Oxidation von TMB nicht geeignet ist.
Im LH Modell wird angenommen dass H_2O_2 und TMB im ersten Schritt auf der Oberfläche der Nanopartikel adsorbieren. Das LH Modell mit Produktinhibition ermöglicht hierbei eine zufriedenstellende Beschreibung der kinetischen Daten bis zu einem Umsatz von 40 %. Die gesamte Analyse zeigt, dass das Langmuir-Hinshelwood Modell die bessere Näherung zur Beschreibung der Kinetik der Nanopartikel katalysierten TMB Oxidation bietet / In this work, two catalytic model reactions were studied using different metallic nanoparticles in aqueous solution. One is the catalytic reduction of p-nitrophenol (Nip) by sodium borohydride (BH_4^-). The reaction proceeds in the following route: Nip is first reduced to p-hydroxylaminophenol (Hx) which is further reduced to the final product p-aminophenol (Amp). Here we present a full kinetic scheme according to Langmuir-Hinshelwood mechanism (LH). The solution of the kinetic equations gives the concentration of Nip as the function of time, which can be directly compared with the experimental data. Satisfactory agreement is found for reactions catalyzed by Au nanoparticles immobilized in spherical polyelectrolyte brushes (SPB-Au) verifying the validity of the reaction route.
In the second part, we present a study on the catalytic oxidation of 3,3’,5,5’-tetramethylbenzidine (TMB) by hydrogen peroxide (H_2O_2) with SPB-Pt nanoparticles. The catalysis was analyzed by two different models: Michaelis-Menten (MM) and Langmuir-Hinshelwood (LH) model. In the MM model, the oxidation of TMB catalyzed by nanoparticles is inferred to the catalysis of peroxidase assuming the Ping-Pong mechanism. It is found that the frequently used analysis with the initial rates introduces large errors and leads to inconsistent results, which indicates that such approach is not suitable to analyze the oxidation of TMB catalyzed by nanoparticles.
In the LH model, it is assumed that H_2O_2 and TMB adsorb on the surface of nanoparticles in the first step. The LH model with product inhibition gives satisfactory description of the kinetic data up to a conversion of 40%. The entire analysis demonstrates that the Langmuir-Hinshelwood model provides a superior approach to describe the kinetics of TMB oxidation catalyzed by nanoparticles.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/20058
Date16 July 2018
CreatorsGu, Sasa
ContributorsBallauff, Matthias, Pinna, Nicola
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY 3.0 DE) Namensnennung 3.0 Deutschland, http://creativecommons.org/licenses/by/3.0/de/

Page generated in 0.0039 seconds