Spelling suggestions: "subject:"sphärischen polyelektrolytbürsten"" "subject:"sphärischen polyelektrolytbürste""
1 |
Synthesis, characterization and catalytic activity of immobilized metallic nanoparticlesWunder, Stefanie 10 June 2013 (has links)
In dieser Arbeit wurden Gold- und PlatinNanopartikel in sphärischen Polyelektolyt-Bürsten (SPB) synthetisiert. Diese wurden zu mechanistischen Untersuchungen der p-Nitrophenol-Reduktion mittels Natriumborhydrid herangezogen. Dabei konnte der Mechanismus der Reaktion auf der Oberfläche der Nanopartikel aufgeklärt werden. Die Reaktion folgt einem Langmuir Hinshelwood (LH) Mechanismus. Hierbei adsorbieren beide Edukte auf die Oberfläche, bevor sie im zu p-Aminophenol umgesetzt werden. Nach der Reaktion desorbiert das Reaktionsprodukt. Mittels des LH Modells konnten für verschiedene Temperaturen die intrinsische Geschwindigkeitskonstante, sowie die Adsorptionskonstanten der Edukte bestimmt werden. Mit diesen Daten konnten dann die Enthalpie und Entropie der Adsorption der Edukte und die Aktivierungsenergie berechnet werden. Neben dem Reaktionsmechanismus wurde die Induktionszeit der p-Nitrophenol Reduktion untersucht. Hierbei konnte gezeigt werden, dass diese Totzeit der Reaktion wahrscheinlich auf eine Restrukturierung der Nanopartikeloberfläche zurückzuführen ist. Sie ist unabhängig von den eingesetzten Konzentrationen des Borhydrids, hingegen abhängig von der Konzentration an p-Nitrophenol auf der Oberfläche der Nanopartikel, was auf Restrukturierung der Nanopartikel durch p-Nitrophenol hindeutet. Zudem wurden Hinweise auf eine spontane Rekonstruktion der Nanopartikel gefunden, die unabhängig von der Konzentration des p-Nitrophenols ist. Des Weiteren wurde die katalytische Oxidation von Morin mit Manganoxid Nanopartikeln untersucht. Diese sind in der Polyelektrolytschale der SPB immobilisiert. Analysen der Reaktionskinetik der Morin Oxidation ergaben, dass auch in diesem Fall der LH Mechanismus vorliegt. Hierbei konnten die Adsorptionskonstanten und Geschwindigkeitskonstanten für verschiedene Temperaturen ermittelt werden und somit die Aktivierungsenergie der Oxidation sowie die Adsorptionsenthalpie und Entropie der Edukte. / In this work, gold and platinum nanoparticles were synthesized into spherical polyelectrolyte brushes (SPB) in order to apply them as catalysts for kinetic studies of the reduction of p-nitrophenol by sodium borohydride. It was found that the reaction follows the Langmuir-Hinshelwood (LH) mechanism where both educts must adsorb onto the surface of the catalyst in order to react. Thereby, the rate determining step is the surface reaction of both educts. After the reaction, the product desorbs from the surface and a free active site is formed. With this model the intrinsic reaction rate and the adsorption constants for both educts could be determined. The measurements at different temperatures allowed the calculation of the activation energy and the adsorption enthalpy and entropy of the educts. Besides the reaction mechanism, the induction time of the reaction was analyzed. Here, it was shown that the reason of this delay time is a restructuring of the nanoparticle surface. The induction time is solely dependent on the concentration of p-nitrophenol on the surface of the nanoparticles and independent of the applied concentrations of borohydride. Moreover, hints for a spontaneous reconstruction of the nanoparticles without p-nitrophenol were found. In the second part, the catalytic oxidation of morin by manganese oxide has been studied. These nanoparticles were embedded inside the polyelectrolyte layer of the SPB. These nanoparticles were used for systematic studies of the oxidation of morin with hydrogen peroxide. It was shown that in this case the reaction followed a LH kinetics as well. Here, the intrinsic rate constants and the adsorption constants could be obtained for different temperatures. The activation energy and the adsorption enthalpy and entropy could be determined accordingly. The adsorption enthalpy is exothermic in both cases.
|
2 |
Catalytic activity analysis of metallic nanoparticles by model reactionsGu, Sasa 16 July 2018 (has links)
In dieser Arbeit wurden zwei katalytische Modellreaktionen studiert. Zunächst die katalytische Reduktion von p-Nitrophenol (Nip) mit Natriumborhydrid (BH_4^-). Diese verläuft entlang der direkten Route: Dabei wird Nip über p-Hydroxylaminophenol (Hx) zum Produkt p-Aminophenol (Amp) reduziert. Ein kinetisches Modell wird vorgestellt, dass die Reaktion auf Basis des Langmuir-Hinshelwood (LH) Mechanismus beschreibt. Die Lösung der Gleichungen gibt die Nip Konzentration als Funktion der Zeit, welche direkt mit den experimentellen Daten verglichen werden kann. Werden als Katalysator auf sphärischen Polyeletrolytbürsten stabilisierte Gold Nanopartikel (SPB-Au) verwendet, zeigt sich eine gute Übereinstimmung und unterstreicht die Allgemeingültigkeit der direkten Route.
Der zweite Teil beschäftigt sich mit der katalytischen Oxidation von 3,3’,5,5’-Tetramethylbenzidin (TMB) durch Wasserstoffperoxid (H_2O_2) an SPB-Pt Nanopartikeln. Dabei wurden die Katalyse mithilfe zweier Modelle analysiert: Michaelis-Menten (MM) und Langmuir-Hinshelwood (LH). Im MM Modell wird die Oxidation von TMB durch die Nanopartikel mit der Peroxidase katalysierten TMB Oxidation unter Annahme des Ping-Pong Mechanismus verglichen. Es wurde gezeigt, dass die häufig verwendete Analyse der initialen Reaktionsraten große Fehler verursacht und zu inkonsistenten Ergebnissen führt. Dies zeigt dass dieses Vorgehen zu Analyse der Oxidation von TMB nicht geeignet ist.
Im LH Modell wird angenommen dass H_2O_2 und TMB im ersten Schritt auf der Oberfläche der Nanopartikel adsorbieren. Das LH Modell mit Produktinhibition ermöglicht hierbei eine zufriedenstellende Beschreibung der kinetischen Daten bis zu einem Umsatz von 40 %. Die gesamte Analyse zeigt, dass das Langmuir-Hinshelwood Modell die bessere Näherung zur Beschreibung der Kinetik der Nanopartikel katalysierten TMB Oxidation bietet / In this work, two catalytic model reactions were studied using different metallic nanoparticles in aqueous solution. One is the catalytic reduction of p-nitrophenol (Nip) by sodium borohydride (BH_4^-). The reaction proceeds in the following route: Nip is first reduced to p-hydroxylaminophenol (Hx) which is further reduced to the final product p-aminophenol (Amp). Here we present a full kinetic scheme according to Langmuir-Hinshelwood mechanism (LH). The solution of the kinetic equations gives the concentration of Nip as the function of time, which can be directly compared with the experimental data. Satisfactory agreement is found for reactions catalyzed by Au nanoparticles immobilized in spherical polyelectrolyte brushes (SPB-Au) verifying the validity of the reaction route.
In the second part, we present a study on the catalytic oxidation of 3,3’,5,5’-tetramethylbenzidine (TMB) by hydrogen peroxide (H_2O_2) with SPB-Pt nanoparticles. The catalysis was analyzed by two different models: Michaelis-Menten (MM) and Langmuir-Hinshelwood (LH) model. In the MM model, the oxidation of TMB catalyzed by nanoparticles is inferred to the catalysis of peroxidase assuming the Ping-Pong mechanism. It is found that the frequently used analysis with the initial rates introduces large errors and leads to inconsistent results, which indicates that such approach is not suitable to analyze the oxidation of TMB catalyzed by nanoparticles.
In the LH model, it is assumed that H_2O_2 and TMB adsorb on the surface of nanoparticles in the first step. The LH model with product inhibition gives satisfactory description of the kinetic data up to a conversion of 40%. The entire analysis demonstrates that the Langmuir-Hinshelwood model provides a superior approach to describe the kinetics of TMB oxidation catalyzed by nanoparticles.
|
Page generated in 0.0776 seconds