Return to search

Microfabricated Gas Sensors Based on Hydrothermally Grown 1-D ZnO Nanostructures

In this thesis, gas sensors based on on-chip hydrothermally grown 1-D zinc oxide (ZnO) nanostructures are presented, to improve the sensitivity, selectivity, and stability of the gas sensors. Metal-oxide-semiconductor (MOS) gas sensors are well-established tools for the monitoring of air quality indoors and outdoors. In recent years, the use of 1-D metal oxide nanostructures for sensing toxic gases, such as nitrogen dioxide, ammonia, and hydrogen, has gained significant attention. However, low-dimensional nanorod (NR) gas sensors can be enhanced further. Most works synthesize the NRs first and then transfer them onto electrodes to produce gas sensors, thereby resulting in large batch-to-batch difference. Therefore, in this thesis six studies on 1-D ZnO NR gas sensors were carried out. First, ultrathin secondary ZnO nanowires (NWs) were successfully grown on a silicon substrate. Second, an on-chip hydrothermally grown ZnO NR gas sensor was developed on a glass substrate. Its performance with regard to sensing nitrogen dioxide and three reductive gases, namely, ethanol, hydrogen, and ammonia, was tested. Third, three 1-D ZnO nanostructures, namely, ZnO NRs, dense ZnO NWs, and sparse ZnO NWs, were synthesized and tested toward nitrogen dioxide. Fourth, hydrothermally grown ZnO NRs, chemical vapor deposited ZnO NWs, and thermal deposited ZnO nanoparticles (NPs) were tested toward ethanol. Fifth, the effect of annealing on the sensitivity and stability of ZnO NR gas sensors was examined. Sixth, ZnO NRs were decorated with palladium oxide NPs and tested toward hydrogen at high temperature. The following conclusions can be drawn from the work in this thesis: 1) ZnO NWs can be obtained by using a precursor at low concentration, temperature of 90 °C, and long reaction time. 2) ZnO NR gas sensors have better selectivity to nitrogen dioxide compared with ethanol, ammonia, and hydrogen. 3) Sparse ZnO NWs are highly sensitive to nitrogen dioxide compared with dense ZnO NWs and ZnO NRs. 4) ZnO NPs have the highest sensitivity to ethanol compared with dense ZnO NWs and ZnO NRs. The sensitivity of the NPs is due to their small grain sizes and large surface areas. 5) ZnO NRs annealed at 600 °C have lower sensitivity toward nitrogen dioxide but higher long-term stability compared with those annealed at 400 °C. 6) When decorated with palladium oxide, both materials form alloy at a temperature higher than 350 °C and decrease the amount of ZnO, which is the sensing material toward hydrogen. Thus, controlling the amount of palladium oxide on ZnO NRs is necessary.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-320183
Date January 2017
CreatorsJiao, Mingzhi
PublisherUppsala universitet, Mikrosystemteknik, Uppsala
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationDigital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 1513

Page generated in 0.0026 seconds