Le but de ce projet est d'améliorer la représentation numérique des processus turbulents de couche limite stable (CLS) sur l'océan Arctique dans le modèle Global Environnemental Multi-échelles (GEM). L'expérience numérique réalisée consiste à simuler le climat observé durant la campagne SHEBA d'un an sur un petit domaine régional à haute résolution (110 x 120 @ 0,5 degré) centré sur la mer de Beaufort. Dans la simulation de contrôle effectuée avec la version non modifiée de GEM, le modèle surestime systématiquement le vent de surface Ūr, la vitesse de friction u* et le flux de chaleur latente (HL) qui est 6 fois trop intense l'été en comparaison des valeurs observées au point SHEBA. De plus, le modèle n'arrive pas à simuler les vents faibles observés (Ūr < 1,6 m/s) et manifeste un biais sec persistant dans la CLS durant toute l'année. En comparant la fonction de stabilité utilisée dans GEM øGEM avec les observations de la campagne SHEBA, on remarque que ce paramétrage mène à une surestimation du mélange turbulent en stratification très stable (RiB > 10¯²) qui pourrait expliquer une partie des erreurs du modèle. L'implémentation d'une fonction de stabilité dérivée à partir des observations de SHEBA øSHEBA dans la simulation de sensibilité
A a permis d'améliorer Ūr et u* dans le modèle GEM. La longueur de rugosité de la glace de mer utilisée dans le modèle GEM zo,GEM = 0,16 mm aussi ne correspond pas aux observations de la campagne SHEBA. En fait, l'unique paramètre zo,GEM utilisé par GEM est trop faible pour le transfert de quantité de mouvement et trop grande pour le transfert de chaleur et d'humidité. L'implémentation des longueurs de rugosité observées à SHEBA (zom,SHEBA et zoh,SHEBA) dans la simulation de sensibilité B a amélioré Ūr simulé. Le vent minimal Ūmin = 2,5 m/s est un autre paramètre utilisé par GEM qui est susceptible d'être inadéquat pour simuler la CLS. Ce paramètre est utilisé pour éviter une division par zéro par vent faible lors du calcul du nombre de Richardson RiB. En utilisant une valeur plus réaliste de Ūmin = 1,0 m/s dans la simulation de sensibilité C, on arrive à simuler les vents faibles (Ūr < 1,6 m/s) qui n'étaient pas simulés par la version originale du modèle GEM. Dans la simulation D, l'implémentation d'une nouvelle équation diagnostique basée sur l'équation de Clausius-Clapeyron pour qr a éliminé complètement le biais sec dans le modèle. Indirectement, la correction à qr a ramené le HL simulé très près des valeurs observées en réduisant le gradient vertical qr -qs responsable de l'évaporation à la surface. Tous les modèles régionaux participant au projet ARCMIP avaient des défauts semblables (biais sec, HL surestimé et u* trop intense) à ceux du modèle GEM pour une expérience très similaire. Il est donc très probable que l'implémentation des mêmes modifications dans ces modèles soit aussi bénéfique. Il est aussi probable qu'en implémentant ces paramétrages dans les modèles participant au Coupled Model Intercomparison Project (CMIP) ait un effet bénéfique sur l'océan Arctique.
______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Modélisation du climat arctique, Couche limite atmosphérique, Interaction atmosphère-glace-
océan, Paramétrisation physique.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMUQ.2297 |
Date | January 2009 |
Creators | Carpentier, Pierre-Luc |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Detected Language | French |
Type | Mémoire accepté, NonPeerReviewed |
Format | application/pdf |
Relation | http://www.archipel.uqam.ca/2297/ |
Page generated in 0.0022 seconds