Return to search

An?lise de fontes de incerteza na modelagem espacial do solo / Analysis of sources of uncertainty in soil spatial modelling.

Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2016-10-21T17:28:48Z
No. of bitstreams: 1
2016 - Alessandro Samuel-Rosa.pdf: 15092171 bytes, checksum: bbe06c922805d4196e0a50c4f2aee7a5 (MD5) / Made available in DSpace on 2016-10-21T17:28:48Z (GMT). No. of bitstreams: 1
2016 - Alessandro Samuel-Rosa.pdf: 15092171 bytes, checksum: bbe06c922805d4196e0a50c4f2aee7a5 (MD5)
Previous issue date: 2016-02-24 / CNPq / Modern soil spatial modelling is based on statistical models to explore the empirical relation-ship among environmental conditions and soil properties. These models are a simplification of reality, and their outcome (soil map) will always be in error. What a soil map conveys is what we expect the soil to be, acknowledging that we are uncertain about it. The objective of this thesis is to evaluate important sources of uncertainty in spatial soil modelling, with emphasis on soil and covariate data. Case studies were developed using data from a catchment located in Southern Brazil. The soil spatial distribution in the study area is highly variable, being deter-mined by the geology and geomorphology (coarse spatial scales), and by agricultural practices (fine spatial scales). Four topsoil properties were explored: clay content, organic carbon con-tent, effective cation exchange capacity and bulk density. Five covariates, each with two levels of spatial detail, were used: area-class soil maps, digital elevation models, geologic maps, land use maps, and satellite images. These soil and covariate data constitute the Santa Maria dataset. Two packages for R were created in support to the case studies, the first (pedometrics) con-taining various functions for spatial exploratory data analysis and model calibration, the second (spsann) designed for the optimization of spatial samples using simulated annealing. The case studies illustrated that existing covariates are suitable for calibrating soil spatial models, and that using more detailed covariates results in only a modest increase in the prediction ac-curacy that may not outweigh the extra costs. More efficient means of increasing prediction accuracy should be explored, such as obtaining more soil observations. For this end, one should use objective means for selecting observation locations to minimize the effects of psycholog-ical responses of soil modellers to conceptual and operational factors on the sampling design. This because conceptual and operational difficulties encountered in the field determine how the motivation of soil modellers shifts between learning/verifying soil-landscape relationships and maximizing the number of observations and geographic coverage. For the sole purpose of spa-tial trend estimation, it should suffice to optimize spatial samples aiming only at reproducing the marginal distribution of the covariates. For the joint purpose of optimizing sample configu-rations for spatial trend and variogram estimation, and spatial interpolation, one can formulate a sound multi-objective optimization problem using robust versions of existing sampling algo-rithms. Overall, we have learned that a single, universal recipe for reducing our uncertainty in soil spatial modelling cannot be formulated. Deciding upon efficient ways of reducing our uncertainty requires, first, that we explore the full potential of existing soil and covariate data using sound spatial modelling techniques. / A modelagem espacial do solo moderna usa modelos estat?sticos para explorar a rela??o em-p?rica entre as condi??es ambientais e as propriedades do solo. Esses modelos s?o uma sim-plifica??o da realidade, e seu resultado (mapa do solo) estar? sempre errado. O que um mapa do solo transmite ? o que esperamos que o solo seja, reconhecendo que somos incertos sobre ele. O objetivo dessa tese ? avaliar importantes fontes de incerteza na modelagem espacial do solo, com ?nfase nos dados do solo e covari?veis. Estudos de caso foram desenvolvidos usando dados de uma bacia hidrogr?fica do sul do Brasil. A distribui??o espacial do solo na ?rea de estudo ? vari?vel, sendo determinada pela geologia e geomorfologia (escalas espaciais maiores) e pr?ticas agr?colas (escalas espaciais menores). Quatro propriedades do solo foram explora-das: teor de argila, teor de carbono org?nico, capacidade de troca cati?nica efetiva e densidade. Cinco covari?veis, cada um com dois n?veis de detalhe espacial, foram utilizadas: mapas areais de classes de solo, modelos digitais de eleva??o, mapas geol?gicos, mapas de uso da terra, e imagens de sat?lite. Esses dados constituem o conjunto de dados de Santa Maria. Dois paco-tes para R foram criados, o primeiro (pedometrics) contendo v?rias fun??es para a an?lise explorat?ria espacial de dados e calibra??o de modelos, o segundo (spann) projetado para a optimiza??o de amostras espaciais usando recozimento simulado. Os estudos de caso ilustraram que as covari?veis existentes s?o apropriadas para calibrar modelos espaciais do solo, e que o uso de covari?veis mais detalhadas resulta em modesto aumento na acur?cia de predi??o que pode n?o compensar os custos adicionais. Meios mais eficientes de aumentar a acur?cia de pre-di??o devem ser explorados, como obter mais observa??es do solo. Para esse fim, deve-se usar meios objetivos para a sele??o dos locais de observa??o a fim de minimizar os efeitos das res-postas psicol?gicas dos modeladores do solo a fatores conceituais e operacionais sobre o plano de amostragem. Isso porque as dificuldades conceituais e operacionais encontradas no campo determinam mudan?as na motiva??o dos modeladores do solo entre aprendizagem/verifica??o das rela??es solo-paisagem e maximiza??o do n?mero de observa??es e cobertura geogr?fica. Para estimar a tend?ncia espacial, deve ser suficiente otimizar as amostras espaciais visando so-mente reproduzir a distribui??o marginal das covari?veis. Para otimizar configura??es amostrais para estimar a tend?ncia espacial e o variograma, e interpola??o espacial, pode-se formular um problema de otimiza??o multi-objetivo s?lido usando vers?es robustas de algoritmos de amos-tragem existentes. No geral, aprendemos que uma receita ?nica, universal para a redu??o da incerteza na modelagem espacial do solo n?o pode ser formulada. Decidir sobre formas efi-cazes de redu??o da incerteza requer, em primeiro lugar, que exploremos todo o potencial dos dados existentes usando t?cnicas de modelagem espacial s?lidas.

Identiferoai:union.ndltd.org:IBICT/oai:localhost:jspui/1333
Date24 February 2016
CreatorsSAMUEL-ROSA, Alessandro
ContributorsAnjos, L?cia Helena Cunha dos, Vasques, Gustavo de Mattos, Heuvelink, Gerardus Bernardus Maria, Ceddia, Marcos Bacis, Teixeira, Wenceslau Geraldes, Oliveira, Ronaldo Pereira de, Assad, Maria Leonor Ribeiro Casimiro Lopes
PublisherUniversidade Federal Rural do Rio de Janeiro, Programa de P?s-Gradua??o em Agronomia - Ci?ncia do Solo, UFRRJ, Brasil, Instituto de Agronomia
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRRJ, instname:Universidade Federal Rural do Rio de Janeiro, instacron:UFRRJ
Rightsinfo:eu-repo/semantics/openAccess
RelationAARTS, E. H. L.; KORST, J. H. M. Boltzmann machines for travelling salesman problems. European Journal of Operational Research, Elsevier BV, v. 39, n. 1, p. 79?95, Mar 1989. ISSN 0377-2217. ABR?O, P. U. R.; GIANLUPE, D.; AZOLIN, M. A. D. Levantamento semi-detalhado dos solos da Esta??o Experimental de Silvicultura de Santa Maria. Porto Alegre, 1988. AERTS, J. C. J. H.; HEUVELINK, G. B. M. Using simulated annealing for resource allocation. International Journal of Geographical Information Science, v. 16, n. 6, p. 571?587, 2002. ISSN 13658816. AGRESTI, A. Categorical data analysis. 2. ed. New York: Wiley-Interscience, 2002. 710 p. ISBN 0471360937. Dispon?vel em: <http://www.stat.ufl.edu/~aa/cda2/cda.html>. ANDERSEN, C. M.; BRO, R. Variable selection in regression ? a tutorial. Journal of Chemometrics, v. 24, n. 11?12, p. 728?737, 2010. ANTUNES, M. A. H.; SIQUEIRA, J. C. S. Caracter?sticas das imagens RapidEye para mapeamento e monitoramento agr?cola e ambiental. In: EPIPHANIO, J. C. N.; GALV?O, L. S. (Ed.). Anais XVI Simp?sio Brasileiro de Sensoriamento Remoto. S?o Jos? dos Campos: Instituto Nacional de Pesquisas Espaciais, 2013. p. 547?554. Dispon?vel em: <http://www.dsr.inpe.br/sbsr2013/files/p1253.pdf>. ARORA, J. Introduction to optimum design. 3. ed. Waltham: Academic Press, 2011. 896 p. ISBN 978-0-12-381375-6. AZOLIN, M. A. D. Podologia das ?reas marginais dos rios Ibicu? e Vacaca?. Porto Alegre, 1977. 71 p. AZOLIN, M. A. D.; MUTTI, L. S. M. Solos da bacia hidrogr?fica do Vacaca?-Mirim. Porto Alegre: DNOS-UFSM, 1988. 20 p. Dispon?vel em: <http://1drv.ms/UAFIOK>. BADDELEY, A. Analysing spatial point patterns in R. Canberra, 2010. 232 p. Dispon?vel em: <http://www.coactivate.org/projects/plein-r/project-home/Baddeley_SPP-workshop_CSIRO_ 2008.pdf>. BADDELEY, A. J.; MOLLER, J.; WAAGEPETERSEN, R. Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerland, Wiley- Blackwell, v. 54, n. 3, p. 329?350, Nov 2000. ISSN 1467-9574. BARRERA-BASSOLS, N.; ZINCK, J. A. Ethnopedology: a worldwide view on the soil knowledge of local people. Geoderma, v. 111, p. 171?195, 2003. Dispon?vel em: <http://linkinghub.elsevier.com/retrieve/pii/S001670610200263X>. BASHER, L. R. Is pedology dead and buried? Australian Journal of Soil Research, v. 35, p. 979?994, 1997. Dispon?vel em: <http://www.publish.csiro.au/paper/S96110>. BATLLE-BAYER, L.; BATJES, N. H.; BINDRABAN, P. S. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review. Agriculture, Ecosystems & Environment, Elsevier BV, v. 137, n. 1-2, p. 47?58, apr 2010. BAZAGLIA FILHO, O.; RIZZO, R.; LEPSCH, I. F.; PRADO, H. do; GOMES, F. H.; MAZZA, J. A.; DEMATT?, J. A. M. Comparison between detailed digital and conventional soil maps of an area with complex geology. Revista Brasileira de Ci?ncia do Solo, FapUNIFESP (SciELO), v. 37, n. 5, p. 1136?1148, 2013. BEHRENS, T.; ZHU, A. X.; SCHMIDT, K.; SCHOLTEN, T. Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma, v. 155, n. 3?4, p. 175?185, 2010. ISSN 0016-7061. BIRKELAND,W. Soils and geomorphology. 3. ed. New York: Oxford University Press., 1999. 430 p. BIVAND, R. S.; PEBESMA, E. J.; G?MEZ-RUBIO, V. Applied spatial data analysis with R. 1. ed. New York: Springer, 2008. 374 p. BIVAND, R. S.; PEBESMA, E. J.; G?MEZ-RUBIO, V. Applied spatial data analysis with R. 2. ed. New York: Springer, 2013. 405 p. BLANCO-CANQUI, H.; LAL, R. Principles of soil conservation and management. Dordrecht: Springer, 2008. 617 p. ISBN 9048185297. BOCKHEIM, J. G.; GENNADIYEV, A. N. The role of soil-forming processes in the definition of taxa in soil taxonomy and the world soil reference base. Geoderma, v. 95, n. 1, p. 53?72, 2000. BOCKHEIM, J. G.; GENNADIYEV, A. N. Soil-factorial models and earth-system science: a review. Geoderma, Elsevier BV, v. 159, n. 3?4, p. 243?251, Nov 2010. ISSN 0016-7061. BONEZZI, A.; BRENDL, C. M.; ANGELIS, M. D. Stuck in the middle: the psychophysics of goal pursuit. Psychological Science, v. 22, n. 5, p. 607?612, 2011. BONNES, M.; BONAIUTO, M. Environmental psychology: from spatial-physical environment to sustainable development. In: . Handbook of environmental psychology. New York: John Wiley & Sons, 2002. p. 28?54. BORTOLUZZI, C. A. Contribui??o ? geologia da regi?o de Santa Maria, Rio Grande do Sul, Brasil. Pesquisas em Geoci?ncias, v. 4, n. 1, p. 7?86, 1974. Dispon?vel em: <http://seer.ufrgs.br/PesquisasemGeociencias/article/view/21834>. BOX, G. E. P. Science and statistics. Journal of the American Statistical Association, v. 71, n. 356, p. 791?799, 1976. Dispon?vel em: <http://www.jstor.org/stable/2286841>. BOX, G. E. P.; WILSON, K. B. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B (Methodological), Wiley for the Royal Statistical Society, v. 13, n. 1, p. 1?45, 1951. ISSN 00359246. Dispon?vel em: <http://www.jstor.org/stable/2983966>. BRASIL. Levantamento de reconhecimento dos solos do estado do Rio Grande do Sul. Recife: Minist?rio da Agricultura. Departamento Nacional de Pesquisa Agropecu?ria. Divis?o de Pesquisa Pedol?gica, 1973. 431 p. Escala 1:750 000. Dispon?vel em: <http://library.wur.nl/isric/fulltext/isricu_i00003061_001.pdf>. BRASIL. Mapa geol?gico da folha Santa Maria. Santa Maria, 1980. (1:50 000). BRASIL. Decreto n? 89.817, de 20 de junho de 1984. Estabelece as Instru??es Reguladoras das Normas T?cnicas da Cartografia Nacional. Bras?lia: Di?rio Oficial da Rep?blica Federativa do Brasil], 1984. 8884?8886 p. Dispon?vel em: <http: //www.concar.ibge.gov.br/detalheDocumentos.aspx?cod=8>. BRASIL. Geo cat?logo do Minist?rio do Meio Ambiente ? manual de uso. 1.0. ed. Bras?lia, 2012. 35 p. Dispon?vel em: <http://geocatalogo.mma.gov.br/>. BREGT, A. K.; BOUMA, J.; JELLINEK, M. Comparison of thematic maps derived from a soil map and from kriging of point data. Geoderma, Elsevier BV, v. 39, n. 4, p. 281?291, may 1987. Dispon?vel em: <http://dx.doi.org/10.1016/0016-7061(87)90048-6>. BREIMAN, L. Random forests. Machine Learning, Springer Science + Business Media, v. 45, n. 1, p. 5?32, 2001. ISSN 0885-6125. BRESLER, E.; GREEN, R. E. Soil parameters and sampling scheme for characterizing soil hydraulic properties of a watershed. Honolulu, 1982. 42 p. Technical Report 148. Dispon?vel em: <http://hdl.handle.net/10125/1983>. BREVIK, E. C.; HARTEMINK, A. E. Early soil knowledge and the birth and development of soil science. Catena, Elsevier BV, v. 83, n. 1, p. 23?33, oct 2010. Dispon?vel em: <http://dx.doi.org/10.1016/j.catena.2010.06.011>. BRUS, D. J. Balanced sampling: a versatile sampling approach for statistical soil surveys. Geoderma, v. 253?254, p. 111?121, 2015. BRUS, D. J.; DE GRUIJTER, J. J. Estimation of non-ergodic variograms and their sampling variance by design-based sampling strategies. Mathematical Geology, Springer Science + Business Media, v. 26, n. 4, p. 437?454, May 1994. ISSN 1573-8868. BRUS, D. J.; DE GRUIJTER, J. J.; VAN GROENIGEN, J. W. Designing spatial coverage samples using the k-means clustering algorithm. In: LAGACHERIE, A. M. P.; VOLTZ, M. (Ed.). Digital soil mapping - an introductory perspective. Amsterdam: Elsevier, 2006, (Developments in Soil Science, v. 31). cap. 14, p. 183?192. BRUS, D. J.; HEUVELINK, G. B. M. Optimization of sample patterns for universal kriging of environmental variables. Geoderma, v. 138, p. 86?95, 2007. BRUS, D. J.; KEMPEN, B.; HEUVELINK, G. B. M. Sampling for validation of digital soil maps. European Journal of Soil Science, v. 62, n. 3, p. 394?407, 2011. BURROUGH, P. A. Multiscale sources of spatial variation in soil. I. The application of fractal concepts to nested levels of soil variation. Journal of Soil Science, Wiley-Blackwell, v. 34, n. 3, p. 577?597, sep 1983. CAMARGO, M. N.; JACOMINE, P. K. T.; OLMOS, J.; CARVALHO, A. P. Proposi??o preliminar de conceitua??o e distin??o de Podz?lico Vermelho-Escuro. In: Conceitua??o sum?ria de algumas classes de solos rec?m-reconhecidas nos levantamentos e estudos de correla??o do SNLCS. Rio de Janeiro: Servi?o Nacional de Levantamento e Conserva??o do Solo, 1982. p. 7?12. Circular t?cnica 1. CAMBULE, A. H.; ROSSITER, D. G.; STOORVOGEL, J. J. A methodology for digital soil mapping in poorly-accessible areas. Geoderma, v. 192, n. 0, p. 341?353, 2013. CARR?, F.; MCBRATNEY, A. B.; MINASNY, B. Estimation and potential improvement of the quality of legacy soil samples for digital soil mapping. Geoderma, Elsevier BV, v. 141, n. 1-2, p. 1?14, Sep 2007. ISSN 0016-7061. CARRILLO, G. vec2dtransf: 2D cartesian coordinate transformation. [S.l.], 2012. 16 p. R package version 1.0. Dispon?vel em: <http://CRAN.R-project.org/package=vec2dtransf>. CARVALHO, A. P. Conceitua??o de terra Bruna Estruturada. In: Conceitua??o sum?ria de algumas classes de solos rec?m-reconhecidas nos levantamentos e estudos de correla??o do SNLCS. Rio de Janeiro: Servi?o Nacional de Levantamento e Conserva??o do Solo, 1982. p. 21?24. (Circular t?cnica 1). CARVALHO, F. M.; MARCO, P. D.; FERREIRA, L. G. The Cerrado into-pieces: habitat fragmentation as a function of landscape use in the savannas of central Brazil. Biological Conservation, Elsevier BV, v. 142, n. 7, p. 1392?1403, jul 2009. CARVALHO JR,W.; CHAGAS, C. S.; MUSELLI, A.; PINHEIRO, H. S. K.; PEREIRA, N. R.; BHERING, S. B. Conditioned Latin hypercube method for soil sampling in the presence of environmental covariates for digital soil mapping. Revista Brasileira de Ci?ncia do Solo, v. 38, n. 2, p. 386?396, 2014. ISSN 0100-0683. CAVAZZI, S.; CORSTANJE, R.; MAYR, T.; HANNAM, J.; FEALY, R. Are fine resolution digital elevation models always the best choice in digital soil mapping? Geoderma, v. 195-196, n. 0, p. 111?121, 2013. ISSN 0016-7061. C? ERN?, V. Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. Journal of Optimization Theory and Applications, Springer Science + Business Media, v. 45, n. 1, p. 41?51, Jan 1985. ISSN 1573-2878. CHATFIELD, C. Model uncertainty, data mining and statistical inference. Journal of the Royal Statistical Society. Series A (Statistics in Society), v. 158, n. 3, p. 419?466, 1995. Dispon?vel em: <http://www.jstor.org/stable/2983440>. CHRISTENSEN, O. F.; DIGGLE, P. J.; RIBEIRO JR, P. J. Analysing positive-valued spatial data: the transformed Gaussian model. In: MONESTIEZ, P.; ALLARD, D.; FROIDEVAUX, R. (Ed.). Proceedings of the Third European Conference on Geostatistics for Environmental Applications. Avignon: geoENVia Association, 2001. (Quantitative Geology and Geostatistics, v. 11), p. 287?298. CHURCHMAN, G. J. The philosophical status of soil science. Geoderma, Elsevier BV, v. 157, n. 3?4, p. 214?221, jul 2010. Dispon?vel em: <http://dx.doi.org/10.1016/j.geoderma.2010.04. 018>. CLAESSEN, M. E. C.; BARRETO, W. O.; PAULA, J. L.; DUARTE, M. N. Manual de m?todos de an?lise de solo. 2. ed. Rio de Janeiro: Embrapa, 1997. 212 p. CLIFFORD, D.; PAYNE, J. E.; PRINGLE, M.; SEARLE, R.; BUTLER, N. Pragmatic soil survey design using flexible Latin hypercube sampling. Computers & Geosciences, Elsevier BV, v. 67, p. 62?68, Jun 2014. ISSN 0098-3004. COETERIER, J. Cues for the perception of the size of space in landscapes. Journal of Environmental Management, v. 42, n. 4, p. 333?347, 1994. ISSN 0301-4797. Dispon?vel em: <http://www.sciencedirect.com/science/article/pii/S0301479784710760>. COMISS?O PASTORAL DA TERRA. Carta aberta ? Sociedade Brasileira e ? Presid?ncia da Rep?blica e ao Congresso Nacional sobre a destrui??o do Cerrado pelo MATOPIBA. 2015. Eletronic. Carta final do I Encontro Regional dos Povos e Comunidades do Cerrado. Dispon?vel em: <http://goo.gl/OgxdvS>. COOKE, R. M. Experts in uncertainty ? opinion and subjective probability in science. Oxford: Oxford University Press, 1991. 321 p. CORREIA, J. R. Pedologia e conhecimento local: proposta metodol?gica de interlocu??o entre saberes constru?dos por ped?logos e agricultores em ?rea de Cerrado em Rio Pardo de Minas, MG. 234 p. Tese (Doutorado) ? Curso de P?s-gradua??o em Agronomia ? Ci?ncia do Solo, Universidade Federal Rural do Rio de Janeiro, 2005. Dispon?vel em: <http://www.cpac.embrapa.br/quadro/87>. CPRM. Programa levantamentos geol?gicos b?sicos do Brasil - Agudo, Folha Sh.22-V-C-V, Estado do Rio Grande do Sul. Bras?lia: CPRM (Servi?o Geol?gico do Brasil), 2007. 97 p. (1:100 000). CRAM?R, H. Mathematical methods of statistics. Princeton: Princeton University Press, 1946. 575 p. ISBN 0-691-08004-6. CRESSIE, N. The origins of kriging. Mathematical Geology, Springer Science + Business Media, v. 22, n. 3, p. 239?252, apr 1990. CRESSIE, N. A. C. Statistics for spatial data. New York: John Wiley & Sons, 1993. 900 p. Dispon?vel em: <http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471002550.html>. DALMOLIN, R. S. D. Faltam ped?logos no brasil. Boletim Informativo da Sociedade Brasileira de Ci?ncia do Solo, v. 24, p. 13?15, 1999. DALMOLIN, R. S. D.; GON?ALVES, C. N.; DICK, D. P.; KNICKER, H.; KLAMT, E.; K?GEL-KNABNER, I. Organic matter characteristics and distribution in Ferralsol profiles of a climosequence in southern Brazil. European Journal of Soil Science, v. 57, p. 644?654, 2006. DE GRUIJTER, J. J.; BRUS, D.; BIERKENS, M.; KNOTTERS, M. Sampling for natural resource monitoring. Berlin: Springer, 2006. 332 p. Dispon?vel em: <http: //www.springer.com/environment/environmental+toxicology/book/978-3-540-22486-0>. DE GRUIJTER, J. J.; TER BRAAK, C. J. F. Model-free estimation from spatial samples: a reappraisal of classical sampling theory. Mathematical Geology, v. 22, p. 407?415, 1990. DEUTSCH, C. V. Annealing techniques applied to reservoir modeling and the integration of geological and engineering (well test) data. 306 p. Tese (Doutorado) ? Department of Applied Earth Sciences, Stanford University, 1992. DIAS, J. R. Aplication of the AGNPS2001 utilizing observed data in the Vacaca?-Mirim River watershed. 118 p. Disserta??o (Mestrado) ? Programa de P?s-Gradua??o em Engenharia Civi, Universidade Federal de Santa Maria, Santa Maria, 2003. Dispon?vel em: <http://w3.ufsm.br/ppgec/wp-content/uploads/Janaina.pdf>. DIGGLE, P.; LOPHAVEN, S. Bayesian geostatistical design. Scandinavian Journal of Statistics, Wiley-Blackwell, v. 33, n. 1, p. 53?64, Mar 2006. ISSN 1467-9469. DIGGLE, P. J. A kernel method for smoothing point process data. Applied Statistics (Journal of the Royal Statistical Society, Series C), v. 34, p. 138?147, 1985. DIGGLE, P. J. Statistical analysis of spatial point patterns. 2. ed. New York: Oxford University Press, 2003. DIGGLE, P. J.; RIBEIRO JR, P. J. Bayesian inference in Gaussian model-based geostatistics. Geographical and Environmental Modelling, Informa UK Limited, v. 6, n. 2, p. 129?146, Nov 2002. ISSN 1469-8323. DIGGLE, P. J.; RIBEIRO JR, P. J. Model-based geostatistics. 1. ed. New York: Springer, 2007. 228 p. Dispon?vel em: <http://www.springer.com/earth+sciences+and+geography/book/ 978-0-387-32907-9>. DILL, P. R. J.; PAIVA, E. M. C. D.; PAIVA, J. B. D.; ROCHA, J. S. M. Assoreamento do reservat?rio do Vacaca?-Mirim e sua rela??o com a deteriora??o da bacia hidrogr?fica contribuinte. Revista Brasileira de Recursos H?dricos, v. 9, p. 7?15, 2004. Dispon?vel em: <http://jararaca.ufsm.br/websites/eloiza/download/Dill/RBRH-Dill.pdf>. DOMBURG, P.; DE GRUIJTER, J. J.; VAN BEEK, P. Designing efficient soil survey schemes with a knowledge-based system using dynamic programming. Geoderma, v. 75, n. 3-4, p. 183?201, 1997. DRA? GUT? , L.; SCHAUPPENLEHNER, T.; MUHAR, A.; STROBL, J.; BLASCHKE, T. Optimization of scale and parametrization for terrain segmentation: an application to soil-landscape modeling. Computers & Geosciences, Elsevier BV, v. 35, n. 9, p. 1875?1883, Sep 2009. ISSN 0098-3004. DRAPER, N. R.; GUTTMAN, I.; KANEMASU, H. The distribution of certain regression statistics. Biometrika, v. 58, n. 2, p. 295?298, 1971. Dispon?vel em: <http: //www.jstor.org/stable/2334517>. DRAPER, N. R.; SMITH, H. Applied regression analyis. 3. ed.Wiley, 1998. 736 p. (Probability and Statistics). ISBN 978-0-471-17082-2. Dispon?vel em: <http://www.wiley.com/WileyCDA/ WileyTitle/productCd-0471170828.html>. DSG. Camobi ? SO. Folha SH.22-V-C-IV/2-SO. Bras?lia: Minist?rio do Ex?rcito, Departamento de Engenharia e Comunica??es, Diretoria do Servi?o Geogr?fico do Ex?rcito, 1980. (1:25 000). DSG. Santa Maria ? NE. Folha SH.22-V-C-IV-1-NE. Bras?lia: Minist?rio do Ex?rcito, Departamento de Engenharia e Comunica??es, Diretoria do Servi?o Geogr?fico do Ex?rcito, 1992. (1:25 000). DSG. Santa Maria ? SE. Folha SH.22-V-C-IV/1-SE. Bras?lia: Minist?rio do Ex?rcito, Departamento de Engenharia e Comunica??es, Diretoria do Servi?o Geogr?fico do Ex?rcito, 1992. (1:25 000). DUH, J.-D.; BROWN, D. G. Knowledge-informed pareto simulated annealing for multiobjective spatial allocation. Computers, Environment and Urban Systems, v. 31, n. 3, p. 253?281, 2007. ISSN 0198-9715. DULLIUS, M. Vegeta??o e solos de uma floresta estacional do Rio Grande do Sul. 127 p. Disserta??o (Mestrado) ? Programa de P?s-Graua??o em Ci?ncia do Solo, Universidade Federal de Santa Maria, Santa Maria, 2012. Dispon?vel em: <http://w3.ufsm.br/ppgcs/>. DUNGAN, J. L.; PERRY, J. N.; DALE, M. R. T.; LEGENDRE, P.; CITRON-POUSTY, S.; FORTIN, M. J.; JAKOMULSKA, A.; MIRITI, M.; ROSENBERG, M. S. A balanced view of scale in spatial statistical analysis. Ecography, Wiley-Blackwell, v. 25, n. 5, p. 626?640, Oct 2002. ISSN 1600-0587. EDIRISOORIYA, G. Stepwise regression is a problem, not a solution. In: Annual Meeting of the Mid-South Educational Research Association. Biloxi: Mid-South Educational Research Association, 1995. p. 16. Dispon?vel em: <http://www.eric.ed.gov/>. ELDEIRY, A. A.; GARCIA, L. A. Detecting soil salinity in alfalfa fields using spatial modeling and remote sensing. Soil Science Society of America Journal, Soil Science Society of America, v. 72, n. 1, p. 201?211, 2008. ISSN 1435-0661. EPSTEIN, R.; KANWISHER, N. A cortical representation of the local visual environment. Nature, Macmillan Magazines Ltd., v. 392, n. 6676, p. 598?601, abr. 1998. ISSN 0028-0836. Dispon?vel em: <http://dx.doi.org/10.1038/33402>. ESPINDOLA, C. R. Retrospectiva cr?tica sobre a pedologia ? um repasse biliogr?fico. 1. ed. Campinas: Editora da Unicamp, 2008. 397 p. EVERITT, B. S. The Cambridge dictionary of statistics. 3. ed. Cambridge: Cambridge University Press, 2006. 432 p. FAO. The FAO voluntary guidelines for the right to food: lasting solutions against hunger. Roma, 2005. 4 p. Dispon?vel em: <http://www.fao.org/righttofood/KC/downloads/vl/docs/>. FAO. Guidelines for soil description. 4. ed. Rome: FAO, 2006. 97 p. Dispon?vel em: <ftp://ftp.fao.org/agl/agll/docs/guidel_soil_descr.pdf>. FAO. Pathways to success. Success stories in agricultural production and food security. Rome, 2009. 34 p. Dispon?vel em: <http://www.fao.org/fileadmin/user_upload/newsroom/docs/ pathways.pdf>. FAO. State of food insecurity in the World: 2015. Rome, 2015. 56 p. Dispon?vel em: <http://reliefweb.int/sites/reliefweb.int/files/resources/a-i4646e.pdf>. FARRAR, D. E.; GLAUBER, R. R. Multicollinearity in regression analysis: the problem revisited. The Review of Econonomics and Statistics, v. 49, p. 92?107, 1967. Dispon?vel em: <http://hdl.handle.net/1721.1/48530>. FERNANDES, B. M. Development models for the Brazilian countryside: paradigmatic and territorial disputes. Latin American Perspectives, SAGE Publications, v. 43, n. 2, p. 48?59, jan 2016. FINKE, P. A. On digital soil assessment with models and the pedometrics agenda. Geoderma, v. 171-172, p. 3?15, 2012. FISHER, P. F.; TATE, N. J. Causes and consequences of error in digital elevation models. Progress in Physical Geography, v. 30, n. 4, p. 467?489, 2006. FLORINSKY, I. V. Accuracy of local topographic variables derived from digital elevation models. International Journal of Geographical Information Science, v. 12, p. 47?61, 1998. FLORINSKY, I. V. The Dokuchaev hypothesis as a basis for predictive digital soil mapping (on the 125th anniversary of its publication). Eurasian Soil Science, MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC., v. 45, p. 445?451, 2012. ISSN 1064-2293. FOX, J.; WEISBERG, S. An R companion to applied regression. 2. ed. Thousand Oaks: Sage, 2011. Dispon?vel em: <http://socserv.socsci.mcmaster.ca/jfox/Books/Companion>. GASCH, C. K.; HENGL, T.; GR?LER, B.; MEYER, H.; MAGNEY, T. S.; BROWN, D. J. Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3D + T: the Cook Agronomy Farm data set. Spatial Statistics, Elsevier BV, v. 14, p. 70?90, nov 2015. GASPARETTO, N. G. L.; MACIEL FILHO, C. L.; MEDEIROS, E. R.; MENEGOTTO, E.; SARTORI, P. L. P.; VEIGA, P. Mapa geol?gico da Folha de Santa Maria. Santa Maria, 1988. 1 p. (1:50 000). GDAL DEVELOPMENT TEAM. GDAL ? Geospatial Data Abstraction Library. [S.l.], 2013. (GDAL 1.10.0, released 2013/04/24). Dispon?vel em: <http://www.gdal.org>. GENTON, M. G. Highly robust variogram estimation. Mathematical Geology, Springer Science + Business Media, v. 30, n. 2, p. 213?221, 1998. GESSLER, P. E.; MOORE, I. D.; MCKENZIE, N. J.; RYAN, P. J. Soil-landscape modelling and spatial prediction of soil attributes. International Journal of Geographical Information Systems, v. 9, n. 4, p. 421?432, 1995. GOBIN, A.; CAMPLING, P.; FEYEN, J. Soil-landscape modelling to quantify spatial variability of soil texture. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, v. 26, n. 1, p. 41 ? 45, 2001. GOLDANI, J. Z. Ocupa??o antr?pica e s?cio-ambiental na ?rea de capta??o do reservat?rio do DNOS, Santa Maria-RS. 104 p. Disserta??o (Mestrado) ? Graduate School in Geomatics, Universidade Federal de Santa Maria, Santa Maria, 2006. Dispon?vel em: <http://cascavel.ufsm.br/tede/tde_busca/arquivo.php?codArquivo=120>. GOOVAERTS, P. Geostatistics for natural resources evaluation. Oxford: Oxford University Press, 1997. 483 p. ISBN 0-19-511538-4. GOOVAERTS, P. Estimation or simulation of soil properties? An optimization problem with conflicting criteria. Geoderma, v. 97, p. 165?186, 2000. GOOVAERTS, P. Geostatistical modelling of uncertainty in soil science. Geoderma, v. 103, n. 1?2, p. 3?26, 2001. GRUNWALD, S. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, v. 152, n. 3-4, p. 195?207, 2009. GRUNWALD, S. Current state of digital soil mapping and what is next. In: BOETTINGER, J.; HOWELL, D.; MOORE, A.; HARTEMINK, A.; KIENAST-BROWN, S. (Ed.). Digital Soil Mapping. Springer Netherlands, 2010, (Progress in Soil Science, v. 2). p. 3?12. ISBN 978-90-481-8862-8. Dispon?vel em: <http://dx.doi.org/10.1007/978-90-481-8863-5_1>. GRUNWALD, S.; THOMPSON, J. A.; BOETTINGER, J. L. Digital soil mapping and modeling at continental scales: finding solutions for global issues. Soil Science Society of America Journal, Soil Science Society of America, v. 75, n. 4, p. 1201?1213, 2011. GUYON, I.; ELISSEEFF, A. An introduction to variable and feature selection. Journal of Machine Learning Research, v. 3, p. 1157?1182, 2003. Dispon?vel em: <http: //jmlr.csail.mit.edu/papers/volume3/guyon03a/guyon03a.pdf>. HACK, C.; LONGHI, S. J.; BOLIGON, A. A.; MURARI, A. B.; PAULESKI, D. T. An?lise fitossociol?gica de um fragmento de floresta estacional decidual no munic?pio de Jaguari, RS. Ci?ncia Rural, v. 35, p. 1083?1091, 2005. HALDAR, S. K.; TI?LJAR, J. Igneous rocks. In: . Introduction to Mineralogy and Petrology. 1. ed. Amsterdam: Elsevier, 2014. cap. 4, p. 93?120. ISBN 9780124167100. HARRELL, F. E. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. New York: Springer, 2001. 571 p. (Springer Series in Statistics). ISBN 0387952322. Dispon?vel em: <http://www.springer.com/mathematics/ probability/book/978-0-387-95232-1>. HARTEMINK, A. E. The depiction of soil profiles since the late 1700s. Catena, Elsevier BV, v. 79, n. 2, p. 113?127, nov 2009. Dispon?vel em: <http://dx.doi.org/10.1016/j.catena.2009.06. 002>. HARTEMINK, A. E.; BOCKHEIM, J. G. Soil genesis and classification. Catena, Elsevier BV, v. 104, p. 251?256, may 2013. Dispon?vel em: <http://dx.doi.org/10.1016/j.catena.2012.12. 001>. HARTEMINK, A. E.; MCBRATNEY, A. A soil science renaissance. Geoderma, v. 148, n. 2, p. 123?129, 2008. HELDWEIN, A.; BURIOL, G.; STRECK, N. O clima de Santa Maria. Ci?ncia e Ambiente, v. 38, p. 43?58, 2009. HENGL, T. Pedometric mapping ? bridging the gaps between conventional and pedometric approaches. 252 p. Tese (Doutorado) ? Wageningen University, Wageningen, 2003. Dispon?vel em: <http://library.wur.nl/WebQuery/edepot/121443>. HENGL, T.; EVANS, I. S. Mathematical and digital models of the land surface. In: HENGL, T.; REUTER, H. I. (Ed.). Geomorphometry ? concepts, software, applications. Amsterdam: Elsevier, 2009, (Developments in Soil Science, v. 33). cap. 2, p. 31?63. HENGL, T.; HEUVELINK, G. B.; STEIN, A. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, v. 120, p. 75?93, 2004. HENGL, T.; HEUVELINK, G. B. M.; KEMPEN, B.; LEENAARS, J. G. B.; WALSH, M. G.; SHEPHERD, K. D.; SILA, A.; MACMILLAN, R. A.; JESUS, J. Mendes de; TAMENE, L.; AL. et. Mapping soil properties of Africa at 250 m resolution: random forests significantly improve current predictions. PLOS ONE, Public Library of Science (PLoS), v. 10, n. 6, p. e0125814, Jun 2015. ISSN 1932-6203. Dispon?vel em: <http://dx.doi.org/10.1371/journal.pone.0125814>. HENGL, T.; HEUVELINK, G. B. M.; ROSSITER, D. G. About regression-kriging: from equations to case studies. Computers & Geosciences, v. 33, n. 10, p. 1301?1315, 2007. ISSN 0098-3004. HENGL, T.; HUSNJAK, S. Evaluating adequacy and usability of soil maps in Croatia. Soil Science Society of America Journal, Soil Science Society of America, v. 70, n. 3, p. 920?929, 2006. ISSN 1435-0661. HENGL, T.; JESUS, J. M. de; MACMILLAN, R. A.; BATJES, N. H.; HEUVELINK, G. B. M.; RIBEIRO, E.; SAMUEL-ROSA, A.; KEMPEN, B.; LEENAARS, J. G. B.; WALSH, M. G.; AL. et. SoilGrids1km ? global soil information based on automated mapping. PLoS ONE, Public Library of Science (PLoS), v. 9, n. 8, p. e105992, Aug 2014. ISSN 1932-6203. HENGL, T.; NIKOLIC, M.; MACMILLAN, R. A. Mapping efficiency and information content. International Journal of Applied Earth Observation and Geoinformation, v. 22, p. 127?138, 2013. HENGL, T.; ROSSITER, D. G.; STEIN, A. Soil sampling strategies for spatial prediction by correlation with auxiliary maps. Australian Journal of Soil Research, v. 41, n. 8, p. 1403?1422, 2003. HEUNG, B.; HO, H. C.; ZHANG, J.; KNUDBY, A.; BULMER, C. E.; SCHMIDT, M. G. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma, Elsevier BV, v. 265, p. 62?77, mar 2016. HEUVELINK, G. B. M. Identification of field attribute error under different models of spatial variation. International journal of geographical information systems, Informa UK Limited, v. 10, n. 8, p. 921?935, Dec 1996. ISSN 0269-3798. HEUVELINK, G. B. M. Error propagation in environmental modelling with GIS. 1. ed. Boca Raton: Taylor and Francis, 1998. 127 p. HEUVELINK, G. B. M. Propagation of error in spatial modelling with GIS. In: . New developments in geographical information systems: principles, techniques, management and applications. 2. ed. Wiley, 2005. cap. 14, p. 207?217. ISBN 978-0-471-73545-8. Dispon?vel em: <http://www.geos.ed.ac.uk/~gisteac/gis_book_abridged/>. HEUVELINK, G. B. M.; BURROUGH, P. A.; STEIN, A. Propagation of errors in spatial modelling with GIS. International journal of geographical information systems, v. 3, n. 4, p. 303?322, 1989. HEUVELINK, G. B. M.; BURROUGH, P. A.; STEIN, A. Propagation of errors in spatial modelling with GIS. In:______ . Classics from IJGIS: twenty years of the International Journal of Geographical Information Science and Systems. [S.l.]: CRC Press, 2006. v. 3, n. 4, p. 67?89. HEUVELINK, G. B. M.; PEBESMA, E. J. Spatial aggregation and soil process modelling. Geoderma, v. 89, n. 1?2, p. 47?65, 1999. ISSN 0016-7061. HEUVELINK, G. B. M.; WEBSTER, R. Modelling soil variation: past, present, and future. Geoderma, v. 100, n. 3-4, p. 269?301, 2001. ISSN 0016-7061. HIRT, C.; FILMER, M.; FEATHERSTONE, W. Comparison and validation of recent freely-available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Australian Journal of Earth Sciences, v. 57, n. 3, p. 337?347, 2010. HOLTZ, M. Do mar ao deserto: a evolu??o do Rio Grande do Sul no tempo geol?gico. 2. ed. Porto Alegre: Editora da UFRGS, 2003. 144 p. HUDSON, B. D. The soil survey as paradigm-based science. Soil Science Society of America Journal, v. 56, p. 836?841, 1992. HULL, C. L. The goal-gradient hypothesis and maze learning. Psychological Review, v. 39, n. 1, p. 25?43, Jan 1932. HUPY, C. M.; SCHAETZL, R. J.; MESSINA, J. P.; HUPY, J. P.; DELAMATER, P.; ENANDER, H.; HUGHEY, B. D.; BOEHM, R.; MITROKA, M. J.; FASHOWAY, M. T. Modeling the complexity of different, recently deglaciated soil landscapes as a function of map scale. Geoderma, Elsevier BV, v. 123, n. 1-2, p. 115?130, Nov 2004. ISSN 0016-7061. HUTCHINSON, M. F. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of Hydrology, v. 106, n. 3-4, p. 211?232, 1989. ISSN 0022-1694. HYNDMAN, R. J.; FAN, Y. Sample quantiles in statistical packages. The American Statistician, Taylor & Francis, Ltd. on behalf of the American Statistical Association, v. 50, n. 4, p. 361?365, 1996. ISSN 00031305. Dispon?vel em: <http://www.jstor.org/stable/2684934>. IBGE. Modelo de Ondula??o Geoidal ? MAPGEO2010. 2010. Dispon?vel em: <http: //www.ibge.gov.br/home/geociencias/geodesia/modelo_geoidal.shtm>. ISO. ISO 7144:1986 Documentation ? Presentation of theses and similar documents. [S.l.], 1986. 10 p. Dispon?vel em: <http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_ detail.htm?csnumber=13736>. IUSS WORKING GROUP WRB. World reference base for soil resources 2006 ? a framework for international classification, correlation and communication, first update 2007. Rome: Food and Agriculture Organization of the United Nations, 2007. 116 p. World Soil Resources Reports No. 103. Dispon?vel em: <http://www.fao.org/fileadmin/templates/nr/images/ resources/pdf_documents/wrb2007_red.pdf>. JACKSON, D. A. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology, v. 74, n. 8, p. 2204?2214, 1993. Dispon?vel em: <http://www.jstor.org/stable/1939574>. JANSSEN, P.; HEUBERGER, P. Calibration of process-oriented models. Ecological Modelling, Elsevier BV, v. 83, n. 1-2, p. 55?66, Dec 1995. ISSN 0304-3800. JARVIS, A.; REUTER, H. I.; NELSON, A.; GUEVARA, E. Hole-filled SRTM for the globe version 4. [S.l.], 2008. Dispon?vel em: <http://www.cgiar-csi.org/data/ srtm-90m-digital-elevation-database-v4-1>. JENNY, H. Factors of soil formation ? a system of quantitative pedology. Toronto: Dover Publications, 1941. 281 p. ISBN 0-486-68128-9. Dispon?vel em: <http://202.200.144.17/sykc/ hjx/con

Page generated in 0.0053 seconds