Wireless operation, near-field or far-field, is a core functionality of any mobile or autonomous system. These systems are battery operated or most often utilize energy scavenging as a means of power generation. Limited access to power, expected long and uninterrupted operation, and constrained physical parameters (e.g. weight and size), which limit overall power harvesting capabilities, are factors that outline the importance for innovative low-power approaches and designs in advanced low-power wireless applications. Low-power approaches become especially important for the wireless transceiver, the block in charge of wireless/remote functionality of the system, as this block is usually the most power hungry component in an integrated system-on-chip (SoC). Three such advanced applications with stringent power requirements are examined including space-based exploratory remote sensing probes and their associated radiation effects, millimeter-wave phased-array radar for high-altitude tactical and geological imaging, and implantable biomedical devices (IMDs), leading to the proposal and implementation of low-power wireless solutions for these applications in SiGe BiCMOS and CMOS and platforms.
Identifer | oai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/52245 |
Date | 27 August 2014 |
Creators | Inanlou, Farzad Michael-David |
Contributors | Cressler, John D. |
Publisher | Georgia Institute of Technology |
Source Sets | Georgia Tech Electronic Thesis and Dissertation Archive |
Language | en_US |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Page generated in 0.0449 seconds