The dissertation presents theoretical and experimental studies on the physical origin of the signal in photothermal microscopy of single particles. This noninvasive optical far field microscopy scheme allows the imaging and detection of single absorbing nanoparticles. Based on a heat-induced pertur- bation in the refractive index in the embedding medium of the nanoscopic absorber, a corresponding probe beam modification is measured and quantified. The method is well established and has been applied since its first demonstration in 2002 to the imaging and characterization of various absorbing particle species, such as quantum dots, single molecules and nanoparticles of different shapes.
The extensive theoretical developments presented in this thesis provide the first quantitative assess- ment of the signal and at the same time enlarge its phenomenology and thereby its potential. On the basis of several approximation schemes to the Maxwell equations, which fundamentally gov- ern the interaction of light with inhomogeneities, several complementing models are devised which describe the photothermal signal both qualitatively and quantitatively. In succession an interdepen- dent and self-consistent set of theoretical descriptions is given and allows important experimental consequences to be drawn. In consequence, the photothermal signal is shown to correspond to the action of a nanoscopic (thermal) lens, represented by the spherically symmetric refractive index pro- file n(r) which accompanies the thermal expansion of the absorber’s environment. The achieved quantification allows the direct measurement of absorption cross-sections of nanoparticles. Further, a qualitatively new phenomenology of the signal is unraveled and experimentally demonstrated. The separate roles of the probing and the heating beams in photothermal microscopy is dismantled and the influence of their relative alignment shown to allow for a controlled adjustment of the effective detection volume. For the first time, both positive and negative signals are demonstrated to occur and to be the characteristic signature of the lens-like action on the probe beam. The detection of the probe beam’s modification is also shown to sensitively depend on the aperture used in the detection chan- nel, and a signal optimization is shown to be feasible. Also, a generalization of the detectable signal via the use of a quadrant photodiode is achieved. Specifically, measuring the far field beam deflec- tion the result of the beam passing the lens off-center manifests in a laterally split detection volume. Hereby, finally each classical photothermal spectroscopic techniques has been shown to possess its microscopic counterpart. Central to the understanding of this generalized and new phenomenology is a scalar wave-optical model which draws an analogy between the scattering of a massive particle wave-packet by a Coulomb potential and the deflection of a focused beam by a photonic potential connected with the thermal lens.
The significance of the findings is demonstrated by its methodological implications on photother- mal correlation spectroscopy in which the diffusion dynamics of absorbing colloidal particles can be studied. The unique split focal detection volumes are shown to allow the sensitive measurement of a deterministic velocity field. Finally, the method is supplemented by a newly introduced sta- tistical analysis method which is capable of characterizing samples containing a heterogeneous size distribution.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:15-qucosa-126286 |
Date | 28 October 2013 |
Creators | Selmke, Markus |
Contributors | Universität Leipzig, Fakultät für Physik und Geowissenschaften, Prof. Dr. Frank Cichos, Prof. Dr. Frank Cichos, Prof. Dr. Dieter Braun |
Publisher | Universitätsbibliothek Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0026 seconds